scholarly journals X-rays from Photoionized Accretion Discs

1994 ◽  
Vol 159 ◽  
pp. 380-380
Author(s):  
G. Matt ◽  
A.C. Fabian ◽  
R.R. Ross

The presence of iron lines and high energy excesses in the X-ray spectra of Seyfert galaxies has been firmly established by Ginga (e.g. Nandra & Pounds 1993 and references therein). These features are generally interpreted as signatures of the reprocessing of the primary X-rays by matter in the neighbourhood of the central black hole, probably distributed in an accretion disc (Lightman & White 1988, George & Fabian 1991, Matt, Perola & Piro 1991).

Author(s):  
Mayur B Shende ◽  
Prashali Chauhan ◽  
Prasad Subramanian

Abstract The temporal behaviour of X-rays from some AGN and microquasars is thought to arise from the rapid collapse of the hot, inner parts of their accretion discs. The collapse can occur over the radial infall timescale of the inner accretion disc. However, estimates of this timescale are hindered by a lack of knowledge of the operative viscosity in the collisionless plasma comprising the inner disc. We use published simulation results for cosmic ray diffusion through turbulent magnetic fields to arrive at a viscosity prescription appropriate to hot accretion discs. We construct simplified disc models using this viscosity prescription and estimate disc collapse timescales for 3C 120, 3C 111, and GRS 1915+105. The Shakura-Sunyaev α parameter resulting from our model ranges from 0.02 to 0.08. Our inner disc collapse timescale estimates agree well with those of the observed X-ray dips. We find that the collapse timescale is most sensitive to the outer radius of the hot accretion disc.


2020 ◽  
Vol 494 (4) ◽  
pp. 6012-6029 ◽  
Author(s):  
D J Walton ◽  
C Pinto ◽  
M Nowak ◽  
M Bachetti ◽  
R Sathyaprakash ◽  
...  

ABSTRACT We present results from the major coordinated X-ray observing programme on the ULX NGC 1313 X-1 performed in 2017, combining XMM–Newton, Chandra, and NuSTAR, focusing on the evolution of the broad-band (∼0.3–30.0 keV) continuum emission. Clear and unusual spectral variability is observed, but this is markedly suppressed above ∼10–15 keV, qualitatively similar to the ULX Holmberg IX X-1. We model the multi-epoch data with two-component accretion disc models designed to approximate super-Eddington accretion, allowing for both a black hole and a neutron star accretor. With regards to the hotter disc component, the data trace out two distinct tracks in the luminosity–temperature plane, with larger emitting radii and lower temperatures seen at higher observed fluxes. Despite this apparent anticorrelation, each of these tracks individually shows a positive luminosity–temperature relation. Both are broadly consistent with L ∝ T4, as expected for blackbody emission with a constant area, and also with L ∝ T2, as may be expected for an advection-dominated disc around a black hole. We consider a variety of possibilities for this unusual behaviour. Scenarios in which the innermost flow is suddenly blocked from view by outer regions of the super-Eddington disc/wind can explain the luminosity–temperature behaviour, but are difficult to reconcile with the lack of strong variability at higher energies, assuming this emission arises from the most compact regions. Instead, we may be seeing evidence for further radial stratification of the accretion flow than is included in the simple models considered, with a combination of winds and advection resulting in the suppressed high-energy variability.


2004 ◽  
Vol 194 ◽  
pp. 204-204
Author(s):  
J. I. González-Hernández ◽  
R. Rebolo ◽  
G. Israelian ◽  
J. Casares

We have determined abundances in the secondary stars of the black hole X-ray binary A0620-00 and the neutron star Binary Cen X-4. These are K type stars veiled by the emission produced by the respective accretion discs. We searched for evidence of nucleosynthetic products from the progenitor of the compact object that could have contaminated the secondary stars (as in Israelian et al., 1999).Using high resolution spectra obtained with VLT/UVES, we have derived in a consistent way stellar parameters and the veiling caused by the accretion disc.


2019 ◽  
Vol 487 (3) ◽  
pp. 4114-4127 ◽  
Author(s):  
Yajie Yuan ◽  
Anatoly Spitkovsky ◽  
Roger D Blandford ◽  
Dan R Wilkins

ABSTRACT In some Seyfert galaxies, the hard X-rays that produce fluorescent emission lines are thought to be generated in a hot corona that is compact and located at only a few gravitational radii above the supermassive black hole. We consider the possibility that this X-ray source may be powered by small-scale magnetic flux tubes attached to the accretion disc near the black hole. We use three-dimensional, time-dependent, special relativistic, force-free simulations in a simplified setting to study the dynamics of such flux tubes as they get continuously twisted by the central compact star/black hole. We find that the dynamical evolution of the flux tubes connecting the central compact object and the accretion disc is strongly influenced by the confinement of the surrounding field. Although differential rotation between the central object and the disc tends to inflate the flux tubes, strong confinement from surrounding field quenches the formation of a jet-like outflow, as the inflated flux tube becomes kink unstable and dissipates most of the extracted rotational energy relatively close to the central object. Such a process may be able to heat up the plasma and produce strong X-ray emission. We estimate the energy dissipation rate and discuss its astrophysical implications.


1983 ◽  
Vol 104 ◽  
pp. 345-346
Author(s):  
M. Kafatos ◽  
Jean A. Eilek

The origin of the high energy (X-ray and gamma-ray) background may be attributed to discrete sources, which are usually thought to be active galactic nuclei (AGN) (cf. Rothschild et al. 1982, Bignami et al. 1979). At X-rays a lot of information has been obtained with HEAO-1 in the spectral range 2–165 keV. At gamma-rays the background has been estimated from the Apollo 15 and 16 (Trombka et al. 1977) and SAS-2 (Bignami et al. 1979) observations. A summary of some of the observations (Rothschild et al. 1982) is shown in Figure 1. The contribution of AGN to the diffuse high energy background is uncertain at X-rays although it is generally estimated to be in the 20–30% range (Rothschild et al. 1982). At gamma-rays, in the range 1–150 MeV, AGN (specifically Seyfert galaxies) could account for all the emission.


2012 ◽  
Vol 27 (28) ◽  
pp. 1230030 ◽  
Author(s):  
FRANK M. RIEGER ◽  
FELIX AHARONIAN

Recent high-sensitivity observation of the nearby radio galaxy M87 has provided important insights into the central engine that drives the large-scale outflows seen in radio, optical and X-rays. This review summarizes the observational status achieved in the high energy (HE < 100 GeV) and very high energy (VHE > 100 GeV) gamma-ray domains, and discusses the theoretical progress in understanding the physical origin of this emission and its relation to the activity of the central black hole.


2019 ◽  
Vol 488 (1) ◽  
pp. 348-361 ◽  
Author(s):  
Guglielmo Mastroserio ◽  
Adam Ingram ◽  
Michiel van der Klis

ABSTRACT We present the first X-ray reverberation mass measurement of a stellar-mass black hole. Accreting stellar-mass and supermassive black holes display characteristic spectral features resulting from reprocessing of hard X-rays by the accretion disc, such as an Fe Kα line and a Compton hump. This emission probes the innermost region of the accretion disc through general relativistic distortions to the line profile. However, these spectral distortions are insensitive to black hole mass, since they depend on disc geometry in units of gravitational radii. Measuring the reverberation lag resulting from the difference in path-length between direct and reflected emission calibrates the absolute length of the gravitational radius. We use a relativistic model able to reproduce the behaviour of the lags as a function of energy for a wide range of variability time-scales, addressing both the reverberation lags on short time-scales and the intrinsic hard lags on longer time-scales. We jointly fit the time-averaged spectrum and the real and imaginary parts of the cross-spectrum as a function of energy for a range of Fourier frequencies to Rossi X-ray Timing Exporer data from the X-ray binary Cygnus X-1. We also show that introducing a self-consistently calculated radial ionisation profile in the disc improves the fit, but requires us to impose an upper limit on ionization profile peak to allow a plausible value of the accretion disc density. This limit leads to a mass value more consistent with the existing dynamical measurement.


2019 ◽  
Vol 488 (4) ◽  
pp. 4614-4622 ◽  
Author(s):  
Rajath Sathyaprakash ◽  
Timothy P Roberts ◽  
Magdalena M Siwek

ABSTRACT Optical and radio observations of shock-ionized bubble nebulae surrounding ultraluminous X-ray sources (ULXs) suggest that they are powered by jets or supercritical outflows presumably launched from the ULX accretion disc. Recent simulations of these systems have shown that the shocked wind can emit thermal X-rays with estimated luminosities ≲1036 erg s−1. In this work, we investigated whether it is possible to detect and spatially resolve the X-ray emission from these systems using archival Chandra observations of the ULX Holmberg IX X-1 (Ho IX X-1). This source is an ideal target to study for two reasons: it is surrounded by an optical bubble nebula with a large spatial extent (∼400 pc) that can easily be resolved with Chandra. Further, it has a hard X-ray continuum that is easily distinguishable from the expected soft thermal emission from the nebula. However, a spectral and photometric analysis on stacked Chandra observations of the source reveals that there is no strong evidence for an X-ray bubble associated with it, to a limiting luminosity of ∼2 × 1036 erg s−1. The detection of such X-ray nebulae may be possible with future X-ray missions such as Advanced Telescope for High ENergy Astrophysics(ATHENA), which would provide useful constraints on the kinematics of the outflow. Finally, our observations also emphasize that the nebular emission does not contribute significantly to the residuals in the X-ray spectrum of the source, which are more likely to be linked to processes localized to the ULX.


1972 ◽  
Vol 14 ◽  
pp. 845-869 ◽  
Author(s):  
Leon Van Speybroeck

The catalog of X-ray sources now includes types I and II super-novae remnants, at least one pulsar, other periodic or quasi-periodic sources, starlike objects which emit primarily in X rays, normal galaxies, radio galaxies, Seyfert galaxies, a quasar, and an apparently isotropic extragalactic background. There is ample evidence that X-ray emission is characteristic of many of the most interesting objects in astronomy, and the background may have cosmological implications. This should not be too surprising, since significant X-ray emission occurs whenever high energy electrons interact, and high energy electron production is usually associated with explosive phenomena.The most useful energy range for X-ray observations extends from about 200 eV to perhaps 10 keV. The low energy limit results from the absorption by the interstellar media, which of course varies from object to object; some typical cutoffs are given in Table I. The high energy limit, which is much more arbitrary, results from the usually observed rapidly decreasing emission with increasing energy, and also from the lack of important characteristic emission or absorption features above this energy range. In many cases, however, observations outside of this energy range are required to definitively identify a dominant source mechanism.


2009 ◽  
Vol 5 (S267) ◽  
pp. 404-404
Author(s):  
Claudio Ricci ◽  
Volker Beckmann ◽  
Marc Audard ◽  
T. J.-L. Courvoisier

A soft (E≲2 keV) excess over the power-law component dominant at higher energies has been found in the X-ray spectra of many Seyfert galaxies. The origin of the soft excess is still an open issue. In the past it was often associated with the high-energy tail of the thermal emission of the accretion disk, but it has been shown recently that the temperature of the disk should be constant (0.1–0.2 keV), regardless of the mass and luminosity of the AGN (Gierlinski & Done 2004). This result implies that some other mechanism is at work, as the temperature of the disk should depend on both the mass of the black hole and the accretion rate.


Sign in / Sign up

Export Citation Format

Share Document