ring galaxies
Recently Published Documents


TOTAL DOCUMENTS

148
(FIVE YEARS 12)

H-INDEX

24
(FIVE YEARS 1)

2021 ◽  
Vol 21 (11) ◽  
pp. 289
Author(s):  
Nurnabilah Nazri ◽  
Adlyka Annuar

Abstract We present Chandra observations of the nearby polar ring galaxy NGC 660 to study its X-ray source population. Based on our analysis, we detected a total of 23 X-ray sources in the 0.5−8 keV band, with luminosities ranging from ∼1037 to ∼1039 erg s−1. Twenty-two of these sources are located off-nuclear and have luminosities below the ultraluminous X-ray source (ULX) threshold value of L 0.5−8 keV < 1039 erg s−1, suggesting that they are likely to be X-ray binary (XRB) candidates. The remaining source is located at the center of the galaxy, suggesting it is an active galactic nucleus (AGN). However, we estimated that four of the detected sources could be associated with background objects. Based on the source count rates in each of the Chandra observations, we found evidence for variability in nine of the 23 sources, including the AGN. However, further investigation with spectral analysis suggested no significant differences in the AGN luminosities between the observations. The X-ray luminosity distribution of the galaxy was found to be generally lower than that expected from previous studies on star forming and collisional ring galaxies. No ULX was also detected in the galaxy, in contrast with what was expected from the galaxyʼs SFR and metallicity (i.e., SFR = 14.43 ± 0.19 M ⊙ yr−1 and Z = 0.94 ± 0.01 Z ⊙, respectively). These results suggest a deficit in the X-ray sources detected. Based on source hardness ratio distribution, we found evidence that the fainter sources have a harder source spectrum, indicating higher absorption. This further suggests that there could be more X-ray sources that were not detected in the galaxy due to significant obscuration.


Author(s):  
Hongjun Pan

This paper extends the application of the ROTASE model for the formation of spiral arms of disc galaxies, questions and confusions from readers about this model are addressed. The optical trail effect behind the spiral arm rotation is the natural consequence of the model. The morphologies of ring-galaxies are classified into four categories: type I: single ring; type II: 8-shaped double ring; type III: 8-shaped double ring wrapped by a larger outer ring; type IV: single ring without spiral and bar. All four types of ring galaxies can be described by the ROTASE model. The ROTASE model predicts that the false impression of spiral arm rotating ahead of the galactic bar in the galaxy MCG+00-04-051 will change with time, it will look like a normal galaxy with about 30&deg; to 40&deg; bar rotation in the future and the galactic bar ends will look like rotating ahead of the spiral arms with further 10 &deg; to 15 &deg;bar rotation. The formation of one arm galaxies is due to X-matter at one side of supermassive black hole is much stronger than other side. More evidence is found to support the explanation of the formation and the evolution of the Hoag&rsquo;s object. The possible evolution of spiral pattern of galaxies is illustrated by UGC 6093. The winding of the Milky Way could be tighter in the future based on the ROTASE model.


Author(s):  
Shigeki Inoue ◽  
Naoki Yoshida ◽  
Lars Hernquist

Abstract We study the fragmentation of collisional ring galaxies (CRGs) using a linear perturbation analysis that computes the physical conditions of gravitational instability, as determined by the balance of self-gravity of the ring against pressure and Coriolis forces. We adopt our formalism to simulations of CRGs and show that the analysis can accurately characterise the stability and onset of fragmentation, although the linear theory appears to under-predict the number of fragments of an unstable CRG by a factor of 2. In addition, since the orthodox ‘density-wave’ model is inapplicable to such self-gravitating rings, we devise a simple approach that describes the rings propagating as material waves. We find that the toy model can predict whether the simulated CRGs fragment or not using information from their pre-collision states. We also apply our instability analysis to a CRG discovered at a high redshift, z = 2.19. We find that a quite high velocity dispersion is required for the stability of the ring, and therefore the CRG should be unstable to ring fragmentation. CRGs are rarely observed at high redshifts, and this may be because CRGs are usually too faint. Since the fragmentation can induce active star formation and make the ring bright enough to observe, the instability could explain this rarity. An unstable CRG fragments into massive clumps retaining the initial disc rotation, and thus it would evolve into a clumpy galaxy with a low surface density in an inter-clump region.


Author(s):  
Hongjun Pan

This paper extends the application of the ROTASE model for the formation of spiral arms of disc galaxies, questions and confusions from readers about this model are addressed. The optical trail effect behind the spiral arm rotation is the natural consequence of the model. The morphologies of ring-galaxies are classified into four categories: type I: single ring; type II: 8-shaped double ring; type III: 8-shaped double ring wrapped by a larger outer ring; type IV: single ring without spiral and bar. All four types of ring galaxies can be described by the ROTASE model. The ROTASE model predicts that the false impression of spiral arm rotating ahead of the galactic bar in the galaxy MCG+00-04-051 will change with time, it will look like a normal galaxy with about 30&deg; to 40&deg; bar rotation in the future and the galactic bar ends will look like rotating ahead of the spiral arms with further 10 &deg; to 15 &deg;bar rotation. The formation of one arm galaxies is due to X-matter at one side of supermassive black hole is much stronger than other side. More evidence is found to support the explanation of the formation and the evolution of the Hoag&rsquo;s object. The possible evolution of spiral pattern of galaxies is illustrated by UGC 6093. The winding of the Milky Way could be tighter in the future based on the ROTASE model.


Author(s):  
D. V. Smirnov ◽  

Based on SDSS data the nuclear activity statistics of the polar-ring galaxies (PRGs) was investigated. BPT-diagrams for PRGs and comparison samples were plotted and analyzed. Obtained results show evidence of excess of active galactic nuclei among PRGs compared to regular objects. Possible interpretation of such effect is discussed.


2020 ◽  
Vol 80 (9) ◽  
Author(s):  
A. A. Kirillov ◽  
E. P. Savelova

AbstractWe present the hypothesis that some of ring galaxies were formed by relic magnetic torus-shaped wormholes. In the primordial plasma before the recombination magnetic fields of wormholes trap baryons whose energy is smaller than a threshold energy. They work as the Maxwell’s demons collecting baryons from the nearest (horizon size) region and thus forming clumps of baryonic matter which have the same torus-like shapes as wormhole throats. Such clumps may serve as seeds for the formation of ring galaxies and smaller objects having the ring form. Upon the recombination torus-like clumps may decay and merge. Unlike galaxies, such objects may contain less or even no dark matter in halos. However the most stringent feature of such objects is the presence of a large-scale toroidal magnetic field. We show that there are threshold values of magnetic fields which give the upper and lower boundary values for the baryon clumps in such protogalaxies.


2020 ◽  
Vol 46 (8) ◽  
pp. 501-508
Author(s):  
D. V. Smirnov ◽  
V. P. Reshetnikov

2020 ◽  
Vol 41 (3) ◽  
pp. 211-221
Author(s):  
Hunhwi Chang ◽  
◽  
Jungjoo Sohn ◽  
Hongbae Ahn
Keyword(s):  

2019 ◽  
Vol 491 (3) ◽  
pp. 3767-3777 ◽  
Author(s):  
Lior Shamir

ABSTRACT A full ring is a form of galaxy morphology that is not associated with a specific stage on the Hubble sequence. Digital sky surveys can collect many millions of galaxy images, and therefore even rare forms of galaxies are expected to be present in relatively large numbers in image data bases created by digital sky surveys. Sloan Digital Sky Survey (SDSS) data release (DR) 14 contains ∼2.6 × 106 objects with spectra identified as galaxies. The method described in this paper applied automatic detection to identify a set of 443 ring galaxy candidates, 104 of them were already included in the Buta  + 17 catalogue of ring galaxies in SDSS, but the majority of the galaxies are not included in previous catalogues. Machine analysis cannot yet match the superior pattern recognition abilities of the human brain, and even a small false positive rate makes automatic analysis impractical when scanning through millions of galaxies. Reducing the false positive rate also increases the true negative rate, and therefore the catalogue of ring galaxy candidates is not exhaustive. However, due to its clear advantage in speed, it can provide a large collection of galaxies that can be used for follow-up observations of objects with ring morphology.


Author(s):  
Luis F Quiroga ◽  
J C Muñoz-Cuartas ◽  
I Rodrigues ◽  
Noam I Libeskind

Abstract We study the formation of polar ring galaxies via minor mergers. We used N-body+hydrodynamics simulations to reproduce the dynamics of the observed system AM 2229-735 that is a minor merger whose interaction signals are those of a progenitor for a polar ring galaxy. We used the observational information of the system to get initial conditions for the orbit and numerical realisations of the galaxies to run the simulations. Our simulations reproduce the global characteristics of interaction observed in the system such as arms and a material bridge connecting the galaxies. As a merger remnant, we found a quasi-stable and self gravitating planar tidal stream with dark matter, stars and gas orbiting in a plane approximately perpendicular to the main galaxy disk leading in the future to a polar ring galaxy. We studied the dynamical conditions of the polar structure and found evidence suggesting that this kind of merger remnant can settle down in a disk-like structure with isothermal support, providing inspiring evidence about the process of formation of galactic disks and providing a potentially independent scenario to study the presence of dark matter in this kind of galaxies.


Sign in / Sign up

Export Citation Format

Share Document