scholarly journals The effects of unresolved double degenerates in the white dwarf luminosity function

2019 ◽  
Vol 491 (4) ◽  
pp. 5671-5681
Author(s):  
A Rebassa-Mansergas ◽  
S Toonen ◽  
S Torres ◽  
P Canals

ABSTRACT We perform an analysis of the single white dwarf and the double degenerate binary populations in the solar neighbourhood following a population synthesis approach to investigate the effects of unresolved double degenerates in the white dwarf luminosity function. We consider all unresolved synthetic binaries to be associated with fictitious effective temperatures and surface gravities that are obtained in the same way as if these objects were observed as single point sources. We evaluate the effects of unresolved double white dwarfs assuming that the synthetic samples are ‘observed’ both by the magnitude-limited SDSS and volume-limited Gaia surveys, the latter limited to a distance of no more than 100 pc. We find that, for our standard model, the impact of unresolved double degenerates in the white dwarf luminosity function derived from the Gaia sample is nearly negligible. Unresolved double degenerates are hence expected to have no effect on the age of the Galactic disc, nor on the star formation history from this population. However, for the SDSS sample, the effect of unresolved double degenerates is significant at the brighter bins (Mbol < 6.5 mag), with the fraction of such systems reaching ≃40 per cent of the total white dwarf population at Mbol = 6 mag. This indicates unresolved double degenerates may influence the constraints on the star formation history derived from the SDSS white dwarf sample.

2021 ◽  
Vol 502 (2) ◽  
pp. 1753-1767
Author(s):  
Santiago Torres ◽  
Alberto Rebassa-Mansergas ◽  
María E Camisassa ◽  
Roberto Raddi

ABSTRACT We analyse the volume-limited nearly complete 100 pc sample of 95 halo white dwarf candidates identified by the second data release of Gaia. Based on a detailed population synthesis model, we apply a method that relies on Gaia astrometry and photometry to accurately derive the individual white dwarf parameters. This method is tested with 25 white dwarfs of our sample for which we took optical spectra and performed spectroscopic analysis. We build and analyse the halo white dwarf luminosity function, for which we find for the first time possible evidences of the cut-off, leading to an age estimate of ${\simeq}12\pm 0.5$ Gyr. The mass distribution of the sample peaks at $0.589\, \mathrm{ M}_{\odot }$, with $71{{\ \rm per\ cent}}$ of the white dwarf masses below $0.6\, \mathrm{ M}_{\odot }$ and just two massive white dwarfs of more than $0.8\, \mathrm{ M}_{\odot }$. From the age distribution, we find three white dwarfs with total ages above 12 Gyr, of which J1312−4728 is the oldest white dwarf known with an age of $12.41\pm 0.22\,$ Gyr. We prove that the star formation history is mainly characterized by a burst of star formation that occurred from 10 to 12 Gyr in the past, but extended up to 8 Gyr. We also find that the peak of the star formation history is centred at around 11 Gyr, which is compatible with the current age of the Gaia-Enceladus encounter. Finally, $13{{\ \rm per\ cent}}$ of our halo sample is contaminated by high-speed young objects (total age <7 Gyr). The origin of these white dwarfs is unclear but their age distribution may be compatible with the encounter with the Sagittarius galaxy.


2020 ◽  
Vol 501 (2) ◽  
pp. 1568-1590
Author(s):  
Lukas J Furtak ◽  
Hakim Atek ◽  
Matthew D Lehnert ◽  
Jacopo Chevallard ◽  
Stéphane Charlot

ABSTRACT We present new measurements of the very low mass end of the galaxy stellar mass function (GSMF) at z ∼ 6−7 computed from a rest-frame ultraviolet selected sample of dropout galaxies. These galaxies lie behind the six Hubble Frontier Field clusters and are all gravitationally magnified. Using deep Spitzer/IRAC and Hubble Space Telescope imaging, we derive stellar masses by fitting galaxy spectral energy distributions and explore the impact of different model assumptions and parameter degeneracies on the resulting GSMF. Our sample probes stellar masses down to $M_{\star }\gt 10^{6}\, \text{M}_{\odot}$ and we find the z ∼ 6−7 GSMF to be best parametrized by a modified Schechter function that allows for a turnover at very low masses. Using a Monte Carlo Markov chain analysis of the GSMF, including accurate treatment of lensing uncertainties, we obtain a relatively steep low-mass end slope $\alpha \simeq -1.96_{-0.08}^{+0.09}$ and a turnover at $\log (M_T/\text{M}_{\odot})\simeq 7.10_{-0.56}^{+0.17}$ with a curvature of $\beta \simeq 1.00_{-0.73}^{+0.87}$ for our minimum assumption model with constant star formation history (SFH) and low dust attenuation, AV ≤ 0.2. We find that the z ∼ 6−7 GSMF, in particular its very low mass end, is significantly affected by the assumed functional form of the star formation history and the degeneracy between stellar mass and dust attenuation. For example, the low-mass end slope ranges from $\alpha \simeq -1.82_{-0.07}^{+0.08}$ for an exponentially rising SFH to $\alpha \simeq -2.34_{-0.10}^{+0.11}$ when allowing AV of up to 3.25. Future observations at longer wavelengths and higher angular resolution with the James Webb Space Telescope are required to break these degeneracies and to robustly constrain the stellar mass of galaxies on the extreme low-mass end of the GSMF.


2018 ◽  
Vol 14 (S343) ◽  
pp. 269-272
Author(s):  
Giada Pastorelli ◽  
Paola Marigo ◽  
Léo Girardi ◽  

AbstractMost of the physical processes driving the TP-AGB evolution are not yet fully understood and they need to be modelled with parameterised descriptions. We present the results of the on-going calibration of the TP-AGB phase based on a complete sample of AGB stars in the Small Magellanic Cloud (SAGE-SMC survey). We computed large grids of TP-AGB models with several combinations of third dredge-up and mass-loss prescriptions with the COLIBRI code. The SMC AGB population is modelled with the population synthesis code TRILEGAL according to the space-resolved star formation history derived with the deep photometry from the VISTA survey of the Magellanic Clouds. We put quantitative constraints on the efficiencies of the third dredge-up and mass loss by requiring the models to reproduce the star counts and the luminosity functions of the observed Oxygen-, Carbon-rich and extreme-AGB stars and we investigate the impact of the best-fitting prescriptions on the chemical yields.


2019 ◽  
Vol 486 (4) ◽  
pp. 5104-5123 ◽  
Author(s):  
C Laigle ◽  
I Davidzon ◽  
O Ilbert ◽  
J Devriendt ◽  
D Kashino ◽  
...  

Abstract Using the light-cone from the cosmological hydrodynamical simulation horizon-AGN, we produced a photometric catalogue over 0 < z < 4 with apparent magnitudes in COSMOS, Dark Energy Survey, Large Synoptic Survey Telescope (LSST)-like, and Euclid-like filters at depths comparable to these surveys. The virtual photometry accounts for the complex star formation history (SFH) and metal enrichment of horizon-AGN galaxies, and consistently includes magnitude errors, dust attenuation, and absorption by intergalactic medium. The COSMOS-like photometry is fitted in the same configuration as the COSMOS2015 catalogue. We then quantify random and systematic errors of photometric redshifts, stellar masses, and star formation rates (SFR). Photometric redshifts and redshift errors capture the same dependencies on magnitude and redshift as found in COSMOS2015, excluding the impact of source extraction. COSMOS-like stellar masses are well recovered with a dispersion typically lower than 0.1 dex. The simple SFHs and metallicities of the templates induce a systematic underestimation of stellar masses at z < 1.5 by at most 0.12 dex. SFR estimates exhibit a dust-induced bimodality combined with a larger scatter (typically between 0.2 and 0.6 dex). We also use our mock catalogue to predict photometric redshifts and stellar masses in future imaging surveys. We stress that adding Euclid near-infrared photometry to the LSST-like baseline improves redshift accuracy especially at the faint end and decreases the outlier fraction by a factor ∼2. It also considerably improves stellar masses, reducing the scatter up to a factor 3. It would therefore be mutually beneficial for LSST and Euclid to work in synergy.


Author(s):  
James E. Upjohn ◽  
Michael J. I. Brown ◽  
Andrew M. Hopkins ◽  
Nicolas J. Bonne

AbstractWe measure the cosmic star formation history out to z = 1.3 using a sample of 918 radio-selected star-forming galaxies within the 2-deg2 COSMOS field. To increase our sample size, we combine 1.4-GHz flux densities from the VLA-COSMOS catalogue with flux densities measured from the VLA-COSMOS radio continuum image at the positions of I < 26.5 galaxies, enabling us to detect 1.4-GHz sources as faint as 40 μJy. We find that radio measurements of the cosmic star formation history are highly dependent on sample completeness and models used to extrapolate the faint end of the radio luminosity function. For our preferred model of the luminosity function, we find the star formation rate density increases from 0.017 M⊙ yr−1 Mpc−3 at z ∼ 0.225 to 0.092 M⊙ yr−1 Mpc−3 at z ∼ 1.1, which agrees to within 40% of recent UV, IR and 3-GHz measurements of the cosmic star formation history.


Author(s):  
F. Zhang ◽  
L. Li ◽  
Z. Han

AbstractUsing the Yunnan-II evolutionary population synthesis models comprising binary stars, we find that the inclusion of binary stars can raise the derived stellar metallicity Z* and/or age t (degeneracy problem), raise the stellar mass M*, lower the gaseous metallicity Zgas and star formation rate (SFR) of galaxies. This means that a few stars form recently in galaxies, while more stars form during the entire evolution process when considering binary stars. If the degeneracy between t and Z* can be broken, its effect on the feedback process and star formation history can be determined.


2019 ◽  
Vol 887 (2) ◽  
pp. 148 ◽  
Author(s):  
Nicholas J. Fantin ◽  
Patrick Côté ◽  
Alan W. McConnachie ◽  
Pierre Bergeron ◽  
Jean-Charles Cuillandre ◽  
...  

2015 ◽  
Vol 11 (S319) ◽  
pp. 140-140
Author(s):  
Gaochao Liu ◽  
Youjun Lu ◽  
Lizhi Xie ◽  
Xuelei Chen ◽  
Yongheng Zhao

AbstractMassive luminous red galaxies (LRGs) are believed to be evolving passively and can be used as cosmic chronometers to estimate the Hubble constant (the differential age method). However, different LRGs may be located in different environments. We investigate the environmental and mass dependence of the formation of ‘quiescent’ LRGs by using the population synthesis software STARLIGHT. We derive the stellar populations in each LRG, and obtain the mean age distribution and the mean star formation history (SFH) of those LRGs. We find that there is no apparent dependence of the mean age and the SFH of quiescent LRGs on their environment, while the ages of these quiescent LRGs depend weakly on their mass. We also evaluate the possible uncertainties in estimating the Hubble constant by the differential age method when using LRGs as cosmic chronometers.


2008 ◽  
Vol 4 (S254) ◽  
pp. 67-72 ◽  
Author(s):  
Shardha Jogee

AbstractHierarchical ΛCDM models provide a successful paradigm for the growth of dark matter on large scales, but they face important challenges in predicting how the baryonic components of galaxies evolve. I present constraints on two aspects of this evolution: (1) The interaction history of galaxies over the last 7 Gyr and the impact of interactions on their star formation properties, based on Jogeeet al. (2008a, b); (2) Constraints on the origin of bulges in hierarchical models and the challenge posed in accounting for galaxies with low bulge-to-total ratios, based on Weinzirl, Jogee, Khochar, Burkert, & Kormendy (2008, hereafter WJKBK08).


Sign in / Sign up

Export Citation Format

Share Document