scholarly journals The halo mass function in alternative dark matter models

2020 ◽  
Vol 493 (1) ◽  
pp. L11-L15 ◽  
Author(s):  
M R Lovell

ABSTRACT The claimed detection of large amounts of substructure in lensing flux anomalies, and in Milky Way stellar stream gap statistics, has led to a step change in constraints on simple warm dark matter models. In this study, we compute predictions for the halo mass function both for these simple models and for comprehensive particle physics models of sterile neutrinos and dark acoustic oscillations. We show that the mass function fit of Lovell et al. underestimates the number of haloes less massive than the half-mode mass, $M_\mathrm {hm}$, by a factor of 2, relative to the extended Press–Schechter (EPS) method. The alternative approach of applying EPS to the Viel et al. matter power spectrum fit instead suggests good agreement at $M_\mathrm {hm}$ relative to the comprehensive model matter power spectrum results, although the number of haloes with mass $\rm{\lt} M_\mathrm {hm}$ is still suppressed due to the absence of small-scale power in the fitting function. Overall, we find that the number of dark matter haloes with masses $\rm{\lt} 10^{8}{\, \rm M_\odot }$ predicted by competitive particle physics models is underestimated by a factor of ∼2 when applying popular fitting functions, although careful studies that follow the stripping and destruction of subhaloes will be required in order to draw robust conclusions.

2021 ◽  
Vol 2021 (12) ◽  
pp. 044
Author(s):  
G. Parimbelli ◽  
G. Scelfo ◽  
S.K. Giri ◽  
A. Schneider ◽  
M. Archidiacono ◽  
...  

Abstract We investigate and quantify the impact of mixed (cold and warm) dark matter models on large-scale structure observables. In this scenario, dark matter comes in two phases, a cold one (CDM) and a warm one (WDM): the presence of the latter causes a suppression in the matter power spectrum which is allowed by current constraints and may be detected in present-day and upcoming surveys. We run a large set of N-body simulations in order to build an efficient and accurate emulator to predict the aforementioned suppression with percent precision over a wide range of values for the WDM mass, Mwdm, and its fraction with respect to the totality of dark matter, fwdm. The suppression in the matter power spectrum is found to be independent of changes in the cosmological parameters at the 2% level for k≲ 10 h/Mpc and z≤ 3.5. In the same ranges, by applying a baryonification procedure on both ΛCDM and CWDM simulations to account for the effect of feedback, we find a similar level of agreement between the two scenarios. We examine the impact that such suppression has on weak lensing and angular galaxy clustering power spectra. Finally, we discuss the impact of mixed dark matter on the shape of the halo mass function and which analytical prescription yields the best agreement with simulations. We provide the reader with an application to galaxy cluster number counts.


2019 ◽  
Vol 487 (1) ◽  
pp. 522-536 ◽  
Author(s):  
Sownak Bose ◽  
Mark Vogelsberger ◽  
Jesús Zavala ◽  
Christoph Pfrommer ◽  
Francis-Yan Cyr-Racine ◽  
...  

ABSTRACT We perform a series of cosmological hydrodynamic simulations to investigate the effects of non-gravitational dark matter (DM) interactions on the intergalactic medium (IGM). In particular, we use the Ethos framework to compare statistics of the Lyman-α forest in cold dark matter (CDM) with an alternative model in which the DM couples strongly with a relativistic species in the early universe. These models are characterized by a cut-off in the linear power spectrum, followed by a series of ‘dark acoustic oscillations’ (DAOs) on sub-dwarf scales. While the primordial cut-off delays the formation of the first galaxies, structure builds up more rapidly in the interacting DM model compared to CDM. We show that although DAOs are quickly washed away in the non-linear clustering of DM at z ≲ 10, their signature can be imprinted prominently in the Lyman-α flux power spectrum at z > 5. On scales larger than the cut-off (k ∼ 0.08 s km−1 for the specific model considered here), the relative difference to CDM is reminiscent of a warm dark matter (WDM) model with a similar initial cut-off; however, the redshift evolution on smaller scales is distinctly different. The appearance and disappearance of DAOs in the Lyman-α flux spectrum provides a powerful way to distinguish interacting DM models from WDM and, indeed, variations in the thermal history of the IGM that may also induce a small-scale cut-off.


2017 ◽  
Vol 32 (15) ◽  
pp. 1740006 ◽  
Author(s):  
Yong Tang

We give a brief review on the interacting Dark Matter (iDM) scenario and its effects on cosmology and particle physics. If DM candidates can have strong self-interactions or interactions with other relativistic particles, we can refer them generally as iDM. IDM is an interesting possibility that is motivated both theoretically and observationally. The relativistic particles could belong to Standard Model (SM), such as photons and neutrinos, or be dark radiation (DR) in new physics. The resulting perturbed Boltzmann equations are concisely discussed and illustrations on matter power spectrum are given.


2022 ◽  
Vol 2022 (01) ◽  
pp. 017
Author(s):  
Adrienne L. Erickcek ◽  
Pranjal Ralegankar ◽  
Jessie Shelton

Abstract The early universe may have contained internally thermalized dark sectors that were decoupled from the Standard Model. In such scenarios, the relic dark thermal bath, composed of the lightest particle in the dark sector, can give rise to an epoch of early matter domination prior to Big Bang Nucleosynthesis, which has a potentially observable impact on the smallest dark matter structures. This lightest dark particle can easily and generically have number-changing self-interactions that give rise to “cannibal” behavior. We consider cosmologies where an initially sub-dominant cannibal species comes to temporarily drive the expansion of the universe, and we provide a simple map between the particle properties of the cannibal species and the key features of the enhanced dark matter perturbation growth in such cosmologies. We further demonstrate that cannibal self-interactions can determine the small-scale cutoff in the matter power spectrum even when the cannibal self-interactions freeze out prior to cannibal domination.


2012 ◽  
Vol 21 (03) ◽  
pp. 1250021
Author(s):  
JIE LIU

Small fraction of isocurvature perturbations may exist and correlate with adiabatic perturbations in the primordial perturbations. Naively switching off isocurvature perturbations may lead to biased results. We study the effect of dark matter isocurvature on the structure formation through N-body simulations. From the best-fit values, we run four sets of simulation with different initial conditions and different box sizes. We find that, if the fraction of dark matter isocurvature is small, we cannot detect its signal through matter power spectrum and two-point correlation function with large scale survey. However, the halo mass function can give an obvious signal. Compared to 5% difference on matter power spectrum, it can get 37% at z = 3 on halo mass function. This indicates that future high precise cluster count experiment can give stringent constraints on dark matter isocurvature perturbations.


2019 ◽  
Vol 485 (4) ◽  
pp. 5474-5489 ◽  
Author(s):  
Mark R Lovell ◽  
Jesús Zavala ◽  
Mark Vogelsberger

Abstract A cut-off in the linear matter power spectrum at dwarf galaxy scales has been shown to affect the abundance, formation mechanism and age of dwarf haloes, and their galaxies at high and low redshifts. We use hydrodynamical simulations of galaxy formation within the ETHOS framework in a benchmark model that has such a cut-off and that has been shown to be an alternative to the cold dark matter (CDM) model that alleviates its dwarf-scale challenges. We show how galaxies in this model form differently to CDM, on a halo-by-halo basis, at redshifts z ≥ 6. We show that when CDM haloes with masses around the ETHOS half-mode mass scale are resimulated with the ETHOS matter power spectrum, they form with 50 per cent less mass than their CDM counterparts due to their later formation times, yet they retain more of their gas reservoir due to the different behaviour of gas and dark matter during the monolithic collapse of the first haloes in models with a galactic-scale cut-off. As a result, galaxies in ETHOS haloes near the cut-off scale grow rapidly between z = 10 and 6 and by z = 6 end up having very similar stellar masses, higher gas fractions and higher star formation rates relative to their CDM counterparts. We highlight these differences by making predictions for how the number of galaxies with old stellar populations is suppressed in ETHOS for both z = 6 galaxies and for gas-poor Local Group fossil galaxies. Interestingly, we find an age gradient in ETHOS between galaxies that form in high- and low-density environments.


2020 ◽  
Vol 498 (3) ◽  
pp. 3403-3419
Author(s):  
Sebastian Bohr ◽  
Jesús Zavala ◽  
Francis-Yan Cyr-Racine ◽  
Mark Vogelsberger ◽  
Torsten Bringmann ◽  
...  

ABSTRACT We propose two effective parameters that fully characterize galactic-scale structure formation at high redshifts (z ≳ 5) for a variety of dark matter (DM) models that have a primordial cutoff in the matter power spectrum. Our description is within the recently proposed ETHOS framework and includes standard thermal warm DM (WDM) and models with dark acoustic oscillations (DAOs). To define and explore this parameter space, we use high-redshift zoom-in simulations that cover a wide range of non-linear scales from those where DM should behave as CDM (k ∼ 10 h Mpc−1), down to those characterized by the onset of galaxy formation (k ∼ 500 h Mpc−1). We show that the two physically motivated parameters hpeak and kpeak, the amplitude and scale of the first DAO peak, respectively, are sufficient to parametrize the linear matter power spectrum and classify the DM models as belonging to effective non-linear structure formation regions. These are defined by their relative departure from cold DM (kpeak → ∞) and WDM (hpeak = 0) according to the non-linear matter power spectrum and halo mass function. We identify a region where the DAOs still leave a distinct signature from WDM down to z = 5, while a large part of the DAO parameter space is shown to be degenerate with WDM. Our framework can then be used to seamlessly connect a broad class of particle DM models to their structure formation properties at high redshift without the need of additional N-body simulations.


2019 ◽  
Vol 490 (3) ◽  
pp. 4237-4253 ◽  
Author(s):  
Florent Leclercq ◽  
Wolfgang Enzi ◽  
Jens Jasche ◽  
Alan Heavens

ABSTRACT We propose a new, likelihood-free approach to inferring the primordial matter power spectrum and cosmological parameters from arbitrarily complex forward models of galaxy surveys where all relevant statistics can be determined from numerical simulations, i.e. black boxes. Our approach, which we call simulator expansion for likelihood-free inference (selfi), builds upon approximate Bayesian computation using a novel effective likelihood, and upon the linearization of black-box models around an expansion point. Consequently, we obtain simple ‘filter equations’ for an effective posterior of the primordial power spectrum, and a straightforward scheme for cosmological parameter inference. We demonstrate that the workload is computationally tractable, fixed a priori, and perfectly parallel. As a proof of concept, we apply our framework to a realistic synthetic galaxy survey, with a data model accounting for physical structure formation and incomplete and noisy galaxy observations. In doing so, we show that the use of non-linear numerical models allows the galaxy power spectrum to be safely fitted up to at least kmax = 0.5 h Mpc−1, outperforming state-of-the-art backward-modelling techniques by a factor of ∼5 in the number of modes used. The result is an unbiased inference of the primordial matter power spectrum across the entire range of scales considered, including a high-fidelity reconstruction of baryon acoustic oscillations. It translates into an unbiased and robust inference of cosmological parameters. Our results pave the path towards easy applications of likelihood-free simulation-based inference in cosmology. We have made our code pyselfi and our data products publicly available at http://pyselfi.florent-leclercq.eu.


Sign in / Sign up

Export Citation Format

Share Document