scholarly journals Dwarf Galaxies and the Black–Hole Scaling Relations

Author(s):  
Andrew King ◽  
Rebecca Nealon

Abstract The sample of dwarf galaxies with measured central black hole masses M and velocity dispersions σ has recently doubled, and gives a close fit to the extrapolation of the M∝σ relation for more massive galaxies. We argue that this is difficult to reconcile with suggestions that the scaling relations between galaxies and their central black holes are simply a statistical consequence of assembly through repeated mergers. This predicts black hole masses significantly larger than those observed in dwarf galaxies unless the initial distribution of uncorrelated seed black hole and stellar masses is confined to much smaller masses than earlier assumed. It also predicts a noticeable flattening of the M∝σ relation for dwarfs, to M∝σ2 compared with the observed M∝σ4. In contrast black hole feedback predicts that black hole masses tend towards a universal M∝σ4 relation in all galaxies, and correctly gives the properties of powerful outflows recently observed in dwarf galaxies. These considerations emphasize once again that the fundamental physical black-hole — galaxy scaling relation is between M and σ. The relation of M to the bulge mass Mb is acausal, and depends on the quite independent connection between Mb and σ set by stellar feedback.

2019 ◽  
Vol 15 (S356) ◽  
pp. 376-376
Author(s):  
Ingyin Zaw

AbstractNuclear black holes in dwarf galaxies are important for understanding the low end of the supermassive black hole mass distribution and the black hole-host galaxy scaling relations. IC 750 is a rare system which hosts an AGN, found in ˜0.5% of dwarf galaxies, with circumnuclear 22 GHz water maser emission, found in ˜3–5% of Type 2 AGNs. Water masers, the only known tracer of warm, dense gas in the center parsec of AGNs resolvable in position and velocity, provide the most precise and accurate mass measurements of SMBHs outside the local group. We have mapped the maser emission in IC 750 and find that it traces a nearly edge-on warped disk, 0.2 pc in diameter. The central black hole has an upper limit mass of ˜1 × 105 M⊙ and a best fit mass of ˜8 × 104 M⊙, one to two orders of magnitude below what is expected from black hole-galaxy scaling relations. This has implications for models of black hole seed formation in the early universe, the growth of black holes, and their co-evolution with their host galaxies.


2020 ◽  
Vol 15 (S359) ◽  
pp. 238-242
Author(s):  
Mar Mezcua

AbstractDetecting the seed black holes from which quasars formed is extremely challenging; however, those seeds that did not grow into supermassive should be found as intermediate-mass black holes (IMBHs) of 100 – 105 M⊙ in local dwarf galaxies. The use of deep multiwavelength surveys has revealed that a population of actively accreting IMBHs (low-mass AGN) exists in dwarf galaxies at least out to z ˜3. The black hole occupation fraction of these galaxies suggests that the early Universe seed black holes formed from direct collapse of gas, which is reinforced by the possible flattening of the black hole-galaxy scaling relations at the low-mass end. This scenario is however challenged by the finding that AGN feedback can have a strong impact on dwarf galaxies, which implies that low-mass AGN in dwarf galaxies might not be the untouched relics of the early seed black holes. This has important implications for seed black hole formation models.


2019 ◽  
Vol 15 (S359) ◽  
pp. 37-39
Author(s):  
Benjamin L. Davis ◽  
Nandini Sahu ◽  
Alister W. Graham

AbstractOur multi-component photometric decomposition of the largest galaxy sample to date with dynamically-measured black hole masses nearly doubles the number of such galaxies. We have discovered substantially modified scaling relations between the black hole mass and the host galaxy properties, including the spheroid (bulge) stellar mass, the total galaxy stellar mass, and the central stellar velocity dispersion. These refinements partly arose because we were able to explore the scaling relations for various sub-populations of galaxies built by different physical processes, as traced by the presence of a disk, early-type versus late-type galaxies, or a Sérsic versus core-Sérsic spheroid light profile. The new relations appear fundamentally linked with the evolutionary paths followed by galaxies, and they have ramifications for simulations and formation theories involving both quenching and accretion.


2020 ◽  
Vol 492 (4) ◽  
pp. 5620-5633
Author(s):  
Aklant K Bhowmick ◽  
Tiziana Di Matteo ◽  
Adam D Myers

ABSTRACT We examine multiple active galactic nucleus (AGN) systems (triples and quadruples, in particular) in the MassiveBlackII simulation over a redshift range of 0.06 ≲ z ≲ 4. We identify AGN systems (with bolometric luminosity $L_{\mathrm{bol}}\gt 10^{42}~\mathrm{erg\, s}^{-1}$) at different scales (defined by the maximum distance between member AGNs) to determine the AGN multiplicity functions. This is defined as the volume/surface density of AGN systems per unit richness R, the number of AGNs in a system. We find that gravitationally bound multiple AGN systems tend to populate scales of ${\lesssim}0.7~\mathrm{cMpc}\, h^{-1}$; this corresponds to angular separations of ≲100 arcsec and a line-of-sight velocity difference ${\lesssim}200~\mathrm{km\, s}^{-1}$. The simulation contains ∼10 and ∼100 triples/quadruples per deg2 up to depths of DESI (g ≲ 24) and LSST (g ≲ 26) imaging, respectively; at least $20{{\ \rm per\ cent}}$ of these should be detectable in spectroscopic surveys. The simulated quasar ($L_{\mathrm{bol}}\gt 10^{44}~\mathrm{erg\, s}^{-1}$) triples and quadruples predominantly exist at 1.5 ≲ z ≲ 3. Their members have black hole masses $10^{6.5}\lesssim M_{\mathrm{ bh}}\lesssim 10^{9}~\mathrm{M}_{\odot }\, h^{-1}$ and live in separate (one central and multiple satellite) galaxies with stellar masses $10^{10}\lesssim M_{*}\lesssim 10^{12}~\mathrm{M}_{\odot }\, h^{-1}$. They live in the most massive haloes (e.g. ${\sim}10^{13}~\mathrm{M}_{\odot }\, h^{-1}$ at z = 2.5; ${\sim}10^{14}~\mathrm{M}_{\odot }\, h^{-1}$ at z = 1) in the simulation. Their detections provide an exciting prospect for understanding massive black hole growth and their merger rates in galaxies in the era of multimessenger astronomy.


2020 ◽  
Vol 499 (1) ◽  
pp. 1233-1249
Author(s):  
M J Rosenthal ◽  
I Zaw

ABSTRACT We present the results of the first dedicated survey for 22 GHz H2O maser emission in dwarf galaxies outside of the Local Group, with the aim of discovering disc masers. Studies of disc masers yield accurate and precise measurements of black hole (BH) mass, and such measurements in dwarf galaxies would be key to understanding the low-mass end of BH–galaxy coevolution. We used the Green Bank Telescope to survey 100 nearby (z ≲ 0.055) dwarf galaxies (M* ≲ 109.5 M⊙) with optical emission line ratios indicative of accretion on to a massive black hole. We detected no new masers down to a limit of ∼12 mJy (5σ). We compared the properties of our sample with those of ∼1850 known detections and non-detections in massive galaxies. We find, in agreement with previous studies, that masers are preferentially hosted by Seyferts and highly obscured, [O iii]-bright active galactic nuclei (AGNs). Our sample has fewer Seyferts, is less obscured, and is [O iii]-faint. Though the overall maser detection rate is ∼3 per cent in massive galaxies, the predicted rate for our sample, weighted by its optical properties, is ∼0.6–1.7 per cent, corresponding to a probability of making no detections of ∼20–50 per cent. We also found a slight increase in the detection rate with increased stellar mass in previously surveyed galaxies. However, further observations are required to discern whether there is an intrinsic difference between the maser fraction in active dwarf galaxies and in their massive counterparts for the same AGN properties.


2013 ◽  
Vol 9 (S304) ◽  
pp. 23-23
Author(s):  
Amy Reines ◽  
J. Greene ◽  
M. Geha

AbstractSupermassive black holes (BHs) live at the heart of essentially all massive galaxies with bulges, power AGN, and are thought to be important agents in the evolution of their hosts. Observations of high-redshift quasars demonstrate that supermassive BHs must start out with masses considerably in excess of normal stellar-mass BHs. However, we do not know how the initial “seed” BHs formed in the early Universe, how massive they were originally, or what types of galaxies they formed in. While direct observations of distant seed BHs and their hosts in the infant Universe are unobtainable with current capabilities, models of BH growth in a cosmological context indicate that present-day dwarf galaxies can place valuable constraints on seed masses and distinguish between various seed formation mechanisms at early times. Using optical spectroscopy from the SDSS, we have systematically assembled the largest sample of dwarf galaxies hosting AGN to date. These dwarf galaxies have stellar masses comparable to the Magellanic Clouds and contain some of the least-massive supermassive BHs known. I will present results from this study and discuss our ongoing efforts to find additional examples of AGN in dwarfs and help constrain theories for the formation of the first seed BHs at high redshift.


2020 ◽  
Vol 499 (1) ◽  
pp. 768-792 ◽  
Author(s):  
Elad Zinger ◽  
Annalisa Pillepich ◽  
Dylan Nelson ◽  
Rainer Weinberger ◽  
Rüdiger Pakmor ◽  
...  

ABSTRACT Supermassive black holes (SMBHs) that reside at the centres of galaxies can inject vast amounts of energy into the surrounding gas and are thought to be a viable mechanism to quench star formation in massive galaxies. Here, we study the $10^{9-12.5}\, \mathrm{M_\odot }$ stellar mass central galaxy population of the IllustrisTNG simulation, specifically the TNG100 and TNG300 volumes at z = 0, and show how the three components – SMBH, galaxy, and circumgalactic medium (CGM) – are interconnected in their evolution. We find that gas entropy is a sensitive diagnostic of feedback injection. In particular, we demonstrate how the onset of the low-accretion black hole (BH) feedback mode, realized in the IllustrisTNG model as a kinetic, BH-driven wind, leads not only to star formation quenching at stellar masses $\gtrsim 10^{10.5}\, \mathrm{M_\odot }$ but also to a change in thermodynamic properties of the (non-star-forming) gas, both within the galaxy and beyond. The IllustrisTNG kinetic feedback from SMBHs increases the average gas entropy, within the galaxy and in the CGM, lengthening typical gas cooling times from $10\!-\!100\, \mathrm{Myr}$ to $1\!-\!10\, \mathrm{Gyr}$, effectively ceasing ongoing star formation and inhibiting radiative cooling and future gas accretion. In practice, the same active galactic nucleus (AGN) feedback channel is simultaneously ‘ejective’ and ‘preventative’ and leaves an imprint on the temperature, density, entropy, and cooling times also in the outer reaches of the gas halo, up to distances of several hundred kiloparsecs. In the IllustrisTNG model, a long-lasting quenching state can occur for a heterogeneous CGM, whereby the hot and dilute CGM gas of quiescent galaxies contains regions of low-entropy gas with short cooling times.


2021 ◽  
Vol 922 (2) ◽  
pp. 217
Author(s):  
Najmeh Emami ◽  
Brian Siana ◽  
Kareem El-Badry ◽  
David Cook ◽  
Xiangcheng Ma ◽  
...  

Abstract Stellar feedback in dwarf galaxies plays a critical role in regulating star formation via galaxy-scale winds. Recent hydrodynamical zoom-in simulations of dwarf galaxies predict that the periodic outward flow of gas can change the gravitational potential sufficiently to cause radial migration of stars. To test the effect of bursty star formation on stellar migration, we examine star formation observables and sizes of 86 local dwarf galaxies. We find a correlation between the R-band half-light radius (R e ) and far-UV luminosity (L FUV) for stellar masses below 108 M ⊙ and a weak correlation between the R e and Hα luminosity (L Hα ). We produce mock observations of eight low-mass galaxies from the FIRE-2 cosmological simulations and measure the similarity of the time sequences of R e and a number of star formation indicators with different timescales. Major episodes of R e time sequence align very well with the major episodes of star formation, with a delay of ∼50 Myr. This correlation decreases toward star formation rate indicators of shorter timescales such that R e is weakly correlated with L FUV (10–100 Myr timescale) and is completely uncorrelated with L Hα (a few Myr timescale), in agreement with the observations. Our findings based on FIRE-2 suggest that the R-band size of a galaxy reacts to star formation variations on a ∼50 Myr timescale. With the advent of a new generation of large space telescopes (e.g., JWST), this effect can be examined explicitly in galaxies at higher redshifts, where bursty star formation is more prominent.


Sign in / Sign up

Export Citation Format

Share Document