scholarly journals Partitioning the Universe into gravitational basins using the cosmic velocity field

2019 ◽  
Vol 489 (1) ◽  
pp. L1-L6 ◽  
Author(s):  
Alexandra Dupuy ◽  
Helene M Courtois ◽  
Florent Dupont ◽  
Florence Denis ◽  
Romain Graziani ◽  
...  

ABSTRACT This letter presents a new approach using the cosmic peculiar velocity field to characterize the morphology and size of large-scale structures in the local Universe. The algorithm developed uses the three-dimensional peculiar velocity field to compute flow lines, or streamlines. The local Universe is then partitioned into volumes corresponding to gravitational basins, also called watersheds, among the different end points of the velocity flow lines. This new methodology is first tested on numerical cosmological simulations, used as benchmark for the method, and then applied to the Cosmic-Flows project observational data in order to pay particular attention to the nearby superclusters including ours. More extensive tests on both simulated and observational data will be discussed in an accompanying paper.

1984 ◽  
Vol 144 ◽  
pp. 13-46 ◽  
Author(s):  
N. J. Cherry ◽  
R. Hillier ◽  
M. E. M. P. Latour

Measurements of fluctuating pressure and velocity, together with instantaneous smoke-flow visualizations, are presented in order to reveal the unsteady structure of a separated and reattaching flow. It is shown that throughout the separation bubble a low-frequency motion can be detected which appears to be similar to that found in other studies of separation. This effect is most significant close to separation, where it leads to a weak flapping of the shear layer. Lateral correlation scales of this low-frequency motion are less than the reattachment length, however; it appears that its timescale is about equal to the characteristic timescale for the shear layer and bubble to change between various shedding phases. These phases were defined by the following observations: shedding of pseudoperiodic trains of vortical structures from the reattachment zone, with a characteristic spacing between structures of typically 60% to 80% of the bubble length; a large-scale but irregular shedding of vorticity; and a relatively quiescent phase with the absence of any large-scale shedding structures and a significant ‘necking’ of the shear layer downstream of reattachment.Spanwise correlations of velocity in the shear layer show on average an almost linear growth of spanwise scale up to reattachment. It appears that the shear layer reaches a fully three-dimensional state soon after separation. The reattachment process does not itself appear to impose an immediate extra three-dimensionalizing effect upon the large-scale structures.


2019 ◽  
Vol 630 ◽  
pp. A151 ◽  
Author(s):  
Natalia Porqueres ◽  
Jens Jasche ◽  
Guilhem Lavaux ◽  
Torsten Enßlin

One of the major science goals over the coming decade is to test fundamental physics with probes of the cosmic large-scale structure out to high redshift. Here we present a fully Bayesian approach to infer the three-dimensional cosmic matter distribution and its dynamics at z >  2 from observations of the Lyman-α forest. We demonstrate that the method recovers the unbiased mass distribution and the correct matter power spectrum at all scales. Our method infers the three-dimensional density field from a set of one-dimensional spectra, interpolating the information between the lines of sight. We show that our algorithm provides unbiased mass profiles of clusters, becoming an alternative for estimating cluster masses complementary to weak lensing or X-ray observations. The algorithm employs a Hamiltonian Monte Carlo method to generate realizations of initial and evolved density fields and the three-dimensional large-scale flow, revealing the cosmic dynamics at high redshift. The method correctly handles multi-modal parameter distributions, which allow constraining the physics of the intergalactic medium with high accuracy. We performed several tests using realistic simulated quasar spectra to test and validate our method. Our results show that detailed and physically plausible inference of three-dimensional large-scale structures at high redshift has become feasible.


2001 ◽  
Vol 441 ◽  
pp. 67-108 ◽  
Author(s):  
L. UKEILEY ◽  
L. CORDIER ◽  
R. MANCEAU ◽  
J. DELVILLE ◽  
M. GLAUSER ◽  
...  

The temporal dynamics of large-scale structures in a plane turbulent mixing layer are studied through the development of a low-order dynamical system of ordinary differential equations (ODEs). This model is derived by projecting Navier–Stokes equations onto an empirical basis set from the proper orthogonal decomposition (POD) using a Galerkin method. To obtain this low-dimensional set of equations, a truncation is performed that only includes the first POD mode for selected streamwise/spanwise (k1/k3) modes. The initial truncations are for k3 = 0; however, once these truncations are evaluated, non-zero spanwise wavenumbers are added. These truncated systems of equations are then examined in the pseudo-Fourier space in which they are solved and by reconstructing the velocity field. Two different methods for closing the mean streamwise velocity are evaluated that show the importance of introducing, into the low-order dynamical system, a term allowing feedback between the turbulent and mean flows. The results of the numerical simulations show a strongly periodic flow indicative of the spanwise vorticity. The simulated flow had the correct energy distributions in the cross-stream direction. These models also indicated that the events associated with the centre of the mixing layer lead the temporal dynamics. For truncations involving both spanwise and streamwise wavenumbers, the reconstructed velocity field exhibits the main spanwise and streamwise vortical structures known to exist in this flow. The streamwise aligned vorticity is shown to connect spanwise vortex tubes.


Author(s):  
Joseph W. Hall ◽  
Daniel Ewing

The development of the large-scale structures in three-dimensional wall jets exiting rectangular nozzles with aspect-ratios of 1 and 4 was investigated using simultaneous measurements of the fluctuating wall pressure across the jet. The pressure fluctuations in the jets were asymmetric and caused the fluctuating wall pressure to be poorly correlated across the jet centerline. A Proper Orthogonal Decomposition analysis indicated that both the first and second modes make similar contributions to the variance of the fluctuating pressure, and were symmetric and antisymmetric, respectively, and the interplay between these modes caused the asymmetry in the instantaneous pressure fluctuations across the jet centreline. A wavelet analysis of the instantaneously reconstructed pressure fields indicated that the fluctuations were predominantly in two frequency bands near the jet centerline, but were only contained in one band on the outer lateral edges of the jet, indicating there were two different large-scale motions present. The development of large-scale structures in the two jets initially differed in the intermediate field with the antisymmetric mode being more prominent in the square jet and the symmetric mode being more prominent in the larger aspect-ratio jet. Further downstream, the symmetric mode was more prominent in both jets.


2011 ◽  
Vol 414 (1) ◽  
pp. 621-626 ◽  
Author(s):  
E. Macaulay ◽  
H. Feldman ◽  
P. G. Ferreira ◽  
M. J. Hudson ◽  
R. Watkins

Sign in / Sign up

Export Citation Format

Share Document