scholarly journals Learning Retention Mechanisms and Evolutionary Parameters of Duplicate Genes from Their Expression Data

Author(s):  
Michael DeGiorgio ◽  
Raquel Assis

Abstract Learning about the roles that duplicate genes play in the origins of novel phenotypes requires an understanding of how their functions evolve. A previous method for achieving this goal, CDROM, employs gene expression distances as proxies for functional divergence and then classifies the evolutionary mechanisms retaining duplicate genes from comparisons of these distances in a decision tree framework. However, CDROM does not account for stochastic shifts in gene expression or leverage advances in contemporary statistical learning for performing classification, nor is it capable of predicting the parameters driving duplicate gene evolution. Thus, here we develop CLOUD, a multi-layer neural network built on a model of gene expression evolution that can both classify duplicate gene retention mechanisms and predict their underlying evolutionary parameters. We show that not only is the CLOUD classifier substantially more powerful and accurate than CDROM, but that it also yields accurate parameter predictions, enabling a better understanding of the specific forces driving the evolution and long-term retention of duplicate genes. Further, application of the CLOUD classifier and predictor to empirical data from Drosophila recapitulates many previous findings about gene duplication in this lineage, showing that new functions often emerge rapidly and asymmetrically in younger duplicate gene copies, and that functional divergence is driven by strong natural selection. Hence, CLOUD represents a major advancement in classifying retention mechanisms and predicting evolutionary parameters of duplicate genes, thereby highlighting the utility of incorporating sophisticated statistical learning techniques to address long-standing questions about evolution after gene duplication.

2020 ◽  
Author(s):  
Michael DeGiorgio ◽  
Raquel Assis

AbstractLearning about the roles that duplicate genes play in the origins of novel phenotypes requires an understanding of how their functions evolve. To date, only one method—CDROM—has been developed with this goal in mind. In particular, CDROM employs gene expression distances as proxies for functional divergence, and then classifies the evolutionary mechanisms retaining duplicate genes from comparisons of these distances in a decision tree framework. However, CDROM does not account for stochastic shifts in gene expression or leverage advances in contemporary statistical learning for performing classification, nor is it capable of predicting the underlying parameters of duplicate gene evolution. Thus, here we develop CLOUD, a multi-layer neural network built upon a model of gene expression evolution that can both classify duplicate gene retention mechanisms and predict their underlying evolutionary parameters. We show that not only is the CLOUD classifier substantially more powerful and accurate than CDROM, but that it also yields accurate parameter predictions, enabling a better understanding of the specific forces driving the evolution and long-term retention of duplicate genes. Further, application of the CLOUD classifier and predictor to empirical data from Drosophila recapitulates many previous findings about gene duplication in this lineage, showing that new functions often emerge rapidly and asymmetrically in younger duplicate gene copies, and that functional divergence is driven by strong natural selection. Hence, CLOUD represents the best available method for classifying retention mechanisms and predicting evolutionary parameters of duplicate genes, thereby also highlighting the utility of incorporating sophisticated statistical learning techniques to address long-standing questions about evolution after gene duplication.


2014 ◽  
Author(s):  
Raquel Assis ◽  
Doris Bachtrog

Gene duplication provides raw material for the evolution of functional innovation. We recently developed a phylogenetic method to classify the evolutionary processes underlying the retention and functional evolution of duplicate genes by quantifying divergence of their gene expression profiles. Here, we apply our method to pairs of duplicate genes in eight mammalian genomes, using data from 11 distinct tissues to construct spatial gene expression profiles. We find that young mammalian duplicates are often functionally conserved, and that functional divergence gradually increases with evolutionary distance between species. Examination of expression patterns in genes with conserved and new functions supports the ?out-of-testes? hypothesis, in which new genes arise with testis-specific functions and acquire functions in other tissues over time. While new functions tend to be tissue-specific, there is no bias toward expression in any particular tissue. Thus, duplicate genes acquire a diversity of functions outside of the testes, possibly contributing to the origin of a multitude of complex phenotypes during mammalian evolution.


2016 ◽  
Author(s):  
Kousuke Hanada ◽  
Ayumi Tezuka ◽  
Masafumi Nozawa ◽  
Yutaka Suzuki ◽  
Sumio Sugano ◽  
...  

AbstractLineage-specifically duplicated genes likely contribute to the phenotypic divergence in closely related species. However, neither the frequency of duplication events nor the degree of selective pressures immediately after gene duplication is clear in the speciation process. Plants have substantially higher gene duplication rates than most other eukaryotes. Here, using Illumina short reads from Arabidopsis halleri, which has highly qualified plant genomes in close species (Brassica rapa, A. thaliana and A. lyrata), we succeeded in generating orthologous gene groups among B. rapa, A. thaliana, A. lyrata and A. halleri. The frequency of duplication events in the Arabidopsis lineage was approximately 10 times higher than the frequency inferred by comparative genomics of Arabidopsis, poplar, rice and moss. Of the currently retained genes in A. halleri, 11–24% had undergone gene duplication in the Arabidopsis lineage. To examine the degree of selective pressure for duplicated genes, we calculated the ratios of nonsynonymous to synonymous substitution rates (KA/KS) in the A. halleri-lyrata and A. halleri lineages. Using a maximum-likelihood framework, we examined positive (KA/KS > 1) and purifying selection (KA/KS < 1) at a significant level (P < 0.01). Duplicate genes tended to have a higher proportion of positive selection compared with non-duplicated genes. More interestingly, we found that functional divergence of duplicated genes was accelerated several million years after gene duplication at a higher proportion than immediately after gene duplication.


2009 ◽  
Vol 91 (4) ◽  
pp. 267-280 ◽  
Author(s):  
KENTARO M. TANAKA ◽  
K. RYO TAKAHASI ◽  
TOSHIYUKI TAKANO-SHIMIZU

SummarySegmental duplications are enriched within many eukaryote genomes, and their potential consequence is gene duplication. While previous theoretical studies of gene duplication have mainly focused on the gene silencing process after fixation, the process leading to fixation is even more important for segmental duplications, because the majority of duplications would be lost before reaching a significant frequency in a population. Here, by a series of computer simulations, we show that purifying selection against loss-of-function mutations increases the fixation probability of a new duplicate gene, especially when the gene is haplo-insufficient. Theoretically, the probability of simultaneous preservation of both duplicate genes becomes twice the loss-of-function mutation rate (uc) when the population size (N), the degree of dominance of mutations (h) and the recombination rate between the duplicate genes (c) are all sufficiently large (Nuc>1, h>0·1 and c>uc). The preservation probability declines rapidly with h and becomes 0 when h=0 (haplo-sufficiency). We infer that masking deleterious loss-of-function mutations give duplicate genes an immediate selective advantage and, together with effects of increased gene dosage, would predominantly determine the fates of the duplicate genes in the early phase of their evolution.


2018 ◽  
Author(s):  
Xueyuan Jiang ◽  
Raquel Assis

AbstractGene duplication has played an important role in the evolution and domestication of flowering plants. Yet little is known about how plant duplicate genes evolve and are retained over long timescales, particularly those arising from small-scale duplication (SSD) rather than whole-genome duplication (WGD) events. Here we address this question in the Poaceae (grass) family by analyzing gene expression data from nine tissues of Brachypodium distachyon, Oryza sativa japonica (rice), and Sorghum bicolor (sorghum). Consistent with theoretical predictions, expression profiles of most grass genes are conserved after SSD, suggesting that functional conservation is the primary outcome of SSD in grasses. However, we also uncover support for widespread functional divergence, much of which occurs asymmetrically via the process of neofunctionalization. Moreover, neofunctionalization preferentially targets younger (child) duplicate gene copies, is associated with RNA-mediated duplication, and occurs quickly after duplication. Further analysis reveals that functional divergence of SSD-derived genes is positively correlated with both sequence divergence and tissue specificity in all three grass species, and particularly with anther expression in B. distachyon. Therefore, as found in many animal species, SSD-derived grass genes often undergo rapid functional divergence that may be driven by natural selection on male-specific phenotypes.


2020 ◽  
Vol 37 (8) ◽  
pp. 2322-2331
Author(s):  
Carl J Dyson ◽  
Michael A D Goodisman

Abstract Gene duplication serves a critical role in evolutionary adaptation by providing genetic raw material to the genome. The evolution of duplicated genes may be influenced by epigenetic processes such as DNA methylation, which affects gene function in some taxa. However, the manner in which DNA methylation affects duplicated genes is not well understood. We studied duplicated genes in the honeybee Apis mellifera, an insect with a highly sophisticated social structure, to investigate whether DNA methylation was associated with gene duplication and genic evolution. We found that levels of gene body methylation were significantly lower in duplicate genes than in single-copy genes, implicating a possible role of DNA methylation in postduplication gene maintenance. Additionally, we discovered associations of gene body methylation with the location, length, and time since divergence of paralogous genes. We also found that divergence in DNA methylation was associated with divergence in gene expression in paralogs, although the relationship was not completely consistent with a direct link between DNA methylation and gene expression. Overall, our results provide further insight into genic methylation and how its association with duplicate genes might facilitate evolutionary processes and adaptation.


Gene ◽  
2008 ◽  
Vol 426 (1-2) ◽  
pp. 65-71 ◽  
Author(s):  
Mehdi Layeghifard ◽  
Razieh Rabani ◽  
Leila Pirhaji ◽  
Bagher Yakhchali

DNA Research ◽  
2018 ◽  
Vol 25 (3) ◽  
pp. 327-339 ◽  
Author(s):  
Kousuke Hanada ◽  
Ayumi Tezuka ◽  
Masafumi Nozawa ◽  
Yutaka Suzuki ◽  
Sumio Sugano ◽  
...  

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10426
Author(s):  
Jingjing Wang ◽  
Yuriy L. Orlov ◽  
Xue Li ◽  
Yincong Zhou ◽  
Yongjing Liu ◽  
...  

Background Genetic regulation is known to contribute to the divergent expression of duplicate genes; however, little is known about how epigenetic modifications regulate the expression of duplicate genes in plants. Methods The histone modification (HM) profile patterns of different modes of gene duplication, including the whole genome duplication, proximal duplication, tandem duplication and transposed duplication were characterized based on ChIP-chip or ChIP-seq datasets. In this study, 10 distinct HM marks including H2Bub, H3K4me1, H3K4me2, H3K4me3, H3K9ac, H3K9me2, H3K27me1, H3K27me3, H3K36me3 and H3K14ac were analyzed. Moreover, the features of gene duplication with different HM patterns were characterized based on 88 RNA-seq datasets of Arabidopsis thaliana. Results This study showed that duplicate genes in Arabidopsis have a more similar HM pattern than single-copy genes in both their promoters and protein-coding regions. The evolution of HM marks is found to be coupled with coding sequence divergence and expression divergence after gene duplication. We found that functionally selective constraints may impose on epigenetic evolution after gene duplication. Furthermore, duplicate genes with distinct functions have more divergence in histone modification compared with the ones with the same function, while higher expression divergence is found with mutations of chromatin modifiers. This study shows the role of epigenetic marks in regulating gene expression and functional divergence after gene duplication in plants based on sequencing data.


2020 ◽  
Author(s):  
Sunil K. Kenchanmane Raju ◽  
S. Marshall Ledford ◽  
Chad E. Niederhuth

ABSTRACTGene duplications have greatly shaped the gene content of plants. Multiple factors, such as the epigenome, can shape the subsequent evolution of duplicate genes and are the subject of ongoing study. We analyze genic DNA methylation patterns in 43 angiosperm species and 928 Arabidopsis thaliana ecotypes to finding differences in the association of whole-genome and single-gene duplicates with genic DNA methylation patterns. Whole-genome duplicates were enriched for patterns associated with higher gene expression and depleted for patterns of non-CG DNA methylation associated with gene silencing. Single-gene duplicates showed variation in DNA methylation patterns based on modes of duplication (tandem, proximal, transposed, and dispersed) and species. Age of gene duplication was a key factor in the DNA methylation of single-gene duplicates. In single-gene duplicates, non-CG DNA methylation patterns associated with silencing were younger, less conserved, and enriched for presence-absence variation. In comparison, DNA methylation patterns associated with constitutive expression were older and more highly conserved. Surprisingly, across the phylogeny, genes marked by non-CG DNA methylation were enriched for duplicate pairs with evidence of positive selection. We propose that DNA methylation has a role in maintaining gene-dosage balance and silencing by non-CG methylation and may facilitate the evolutionary fate of duplicate genes.


Sign in / Sign up

Export Citation Format

Share Document