gene duplicates
Recently Published Documents


TOTAL DOCUMENTS

77
(FIVE YEARS 7)

H-INDEX

23
(FIVE YEARS 2)

Author(s):  
Tristan L. Stark ◽  
Rebecca S. Kaufman ◽  
Maria A. Maltepes ◽  
Peter B. Chi ◽  
David A. Liberles
Keyword(s):  

Author(s):  
Tristan Stark ◽  
Rebecca Kaufman ◽  
Maria Maltepes ◽  
David Liberles

Gene duplication is a fundamental process that has the potential to drive phenotypic differences between populations and species. While evolutionarily neutral changes have the potential to affect phenotypes, detecting selection acting on gene duplicates can uncover cases of adaptive diversification. Existing methods to detect selection on duplicates work mostly inter-specifically and are based upon selection on coding sequence changes, here we present a method to detect selection directly on a copy number variant segregating in a population. The method relies upon expected relationships between allele (new duplication) age and frequency in the population dependent upon the effective population size. Using both a haploid and a diploid population with a Moran Model under several population sizes, the neutral baseline for copy number variants is established. The ability of the method to reject neutrality for duplicates with known age (measured in pairwise dS value) and frequency in the population is established through mathematical analysis and through simulations. Power is particularly good in the diploid case and with larger effective population sizes, as expected. With extension of this method to larger population sizes, this is a tool to analyze selection on copy number variants in any natural or experimentally evolving population.


2020 ◽  
Author(s):  
Sunil K. Kenchanmane Raju ◽  
S. Marshall Ledford ◽  
Chad E. Niederhuth

ABSTRACTGene duplications have greatly shaped the gene content of plants. Multiple factors, such as the epigenome, can shape the subsequent evolution of duplicate genes and are the subject of ongoing study. We analyze genic DNA methylation patterns in 43 angiosperm species and 928 Arabidopsis thaliana ecotypes to finding differences in the association of whole-genome and single-gene duplicates with genic DNA methylation patterns. Whole-genome duplicates were enriched for patterns associated with higher gene expression and depleted for patterns of non-CG DNA methylation associated with gene silencing. Single-gene duplicates showed variation in DNA methylation patterns based on modes of duplication (tandem, proximal, transposed, and dispersed) and species. Age of gene duplication was a key factor in the DNA methylation of single-gene duplicates. In single-gene duplicates, non-CG DNA methylation patterns associated with silencing were younger, less conserved, and enriched for presence-absence variation. In comparison, DNA methylation patterns associated with constitutive expression were older and more highly conserved. Surprisingly, across the phylogeny, genes marked by non-CG DNA methylation were enriched for duplicate pairs with evidence of positive selection. We propose that DNA methylation has a role in maintaining gene-dosage balance and silencing by non-CG methylation and may facilitate the evolutionary fate of duplicate genes.


PLoS Biology ◽  
2019 ◽  
Vol 17 (11) ◽  
pp. e3000519 ◽  
Author(s):  
Johan Hallin ◽  
Christian R. Landry
Keyword(s):  

Author(s):  
Grant T Godden ◽  
Taliesin J Kinser ◽  
Pamela S Soltis ◽  
Douglas E Soltis

Abstract Ancient duplication events and retained gene duplicates have contributed to the evolution of many novel plant traits and, consequently, to the diversity and complexity within and across plant lineages. While mounting evidence highlights the importance of whole-genome duplication (WGD; polyploidy) and its key role as an evolutionary driver, gene duplication dynamics and mechanisms, both of which are fundamental to our understanding of evolutionary process and patterns of plant diversity, remain poorly characterized in many clades. We use newly available transcriptomic data and a robust phylogeny to investigate the prevalence, occurrence, and timing of gene duplications in Lamiaceae (mints), a species-rich and chemically diverse clade with many ecologically, economically, and culturally important species. We also infer putative WGDs—an extreme mechanism of gene duplication—using large-scale data sets from synonymous divergence (KS), phylotranscriptomic, and divergence time analyses. We find evidence for widespread but asymmetrical levels of gene duplication and ancient polyploidy in Lamiaceae that correlate with species richness, including pronounced levels of gene duplication and putative ancient WGDs (7–18 events) within the large subclade Nepetoideae and up to 10 additional WGD events in other subclades. Our results help disentangle WGD-derived gene duplicates from those produced by other mechanisms and illustrate the non-uniformity of duplication dynamics in mints, setting the stage for future investigations that explore their impacts on trait diversity and species diversification. Our results also provide a practical context for evaluating the benefits and limitations of transcriptome-based approaches to inferring WGD, and we offer recommendations for researchers interested in investigating ancient WGDs in other plant groups.


2019 ◽  
Vol 36 (2) ◽  
pp. 285-311
Author(s):  
Jiahao Diao ◽  
Tristan L. Stark ◽  
David A. Liberles ◽  
Małgorzata M. O’Reilly ◽  
Barbara R. Holland
Keyword(s):  

Author(s):  
Jonas Defoort ◽  
Yves Van de Peer ◽  
Lorenzo Carretero-Paulet

Abstract Gene duplicates, generated either through whole genome duplication (WGD) or small-scale duplication (SSD), are prominent in angiosperms and are believed to play an important role in adaptation and in generating evolutionary novelty. Previous studies reported contrasting evolutionary and functional dynamics of duplicate genes depending on the mechanism of origin, a behaviour that is hypothesized to stem from constraints to maintain the relative dosage balance between the genes concerned and their interaction context. However, the mechanisms ultimately influencing loss and retention of gene duplicates over evolutionary time are not yet fully elucidated. Here, by using a robust classification of gene duplicates in Arabidopsis thaliana, Solanum lycopersicum and Zea mays, large RNAseq expression compendia and an extensive protein-protein interaction (PPI) network from Arabidopsis, we investigated the impact of PPIs on the differential evolutionary and functional fate of WGD and SSD duplicates. In all three species, retained WGD duplicates show stronger constraints to diverge at the sequence and expression level than SSD ones, a pattern that is also observed for shared PPI partners between Arabidopsis duplicates. PPIs are preferentially distributed among WGD duplicates and specific functional categories. Furthermore, duplicates with PPIs tend to be under stronger constraints to evolve than their counterparts without PPIs regardless of their mechanism of origin. Our results support dosage balance constraint as a specific property of genes involved in biological interactions, including physical PPIs, and suggest that additional factors may be differently influencing the evolution of genes following duplication, depending on the species, time and mechanism of origin.


2018 ◽  
Vol 18 (1) ◽  
Author(s):  
R. A. Costa ◽  
R. S. T. Martins ◽  
E. Capilla ◽  
L. Anjos ◽  
D. M. Power
Keyword(s):  

2018 ◽  
Vol 444 (2) ◽  
pp. 71-82 ◽  
Author(s):  
Brittany Z. Suggs ◽  
Aislinn L. Latham ◽  
Adriana T. Dawes ◽  
Helen M. Chamberlin

Genes ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 492 ◽  
Author(s):  
Michaela Strážnická ◽  
Silvia Marková ◽  
Jeremy Searle ◽  
Petr Kotlík

Increasing evidence suggests that adaptation to diverse environments often involves selection on existing variation rather than new mutations. A previous study identified a nonsynonymous single nucleotide polymorphism (SNP) in exon 2 of two paralogous β-globin genes of the bank vole (Clethrionomys glareolus) in Britain in which the ancestral serine (Ser) and the derived cysteine (Cys) allele represent geographically partitioned functional variation affecting the erythrocyte antioxidative capacity. Here we studied the geographical pattern of the two-locus Ser/Cys polymorphism throughout Europe and tested for the geographic correlation between environmental variables and allele frequency, expected if the polymorphism was under spatially heterogeneous environment-related selection. Although bank vole population history clearly is important in shaping the dispersal of the oxidative stress protective Cys allele, analyses correcting for population structure suggest the Europe-wide pattern is affected by geographical variation in environmental conditions. The β-globin phenotype is encoded by the major paralog HBB-T1 but we found evidence of bidirectional gene conversion of exon 2 with the low-expression paralog HBB-T2. Our data support the model where gene conversion reshuffling genotypes between high- and low- expressed paralogs enables tuning of erythrocyte thiol levels, which may help maintain intracellular redox balance under fluctuating environmental conditions. Therefore, our study suggests a possible role for gene conversion between differentially expressed gene duplicates as a mechanism of physiological adaptation of populations to new or changing environments.


Sign in / Sign up

Export Citation Format

Share Document