scholarly journals Degree of Functional Divergence in Duplicates Is Associated with Distinct Roles in Plant Evolution

Author(s):  
Akihiro Ezoe ◽  
Kazumasa Shirai ◽  
Kousuke Hanada

Abstract Gene duplication is a major mechanism to create new genes. After gene duplication, some duplicated genes undergo functionalization, whereas others largely maintain redundant functions. Duplicated genes comprise various degrees of functional diversification in plants. However, the evolutionary fate of high and low diversified duplicates is unclear at genomic scale. To infer high and low diversified duplicates in Arabidopsis thaliana genome, we generated a prediction method for predicting whether a pair of duplicate genes was subjected to high or low diversification based on the phenotypes of knock-out mutants. Among 4,017 pairs of recently duplicated A. thaliana genes, 1,052 and 600 are high and low diversified duplicate pairs, respectively. The predictions were validated based on the phenotypes of generated knock-down transgenic plants. We determined that the high diversified duplicates resulting from tandem duplications tend to have lineage-specific functions, whereas the low diversified duplicates produced by whole-genome duplications are related to essential signaling pathways. To assess the evolutionary impact of high and low diversified duplicates in closely related species, we compared the retention rates and selection pressures on the orthologs of A. thaliana duplicates in two closely related species. Interestingly, high diversified duplicates resulting from tandem duplications tend to be retained in multiple lineages under positive selection. Low diversified duplicates by whole-genome duplications tend to be retained in multiple lineages under purifying selection. Taken together, the functional diversities determined by different duplication mechanisms had distinct effects on plant evolution.

GigaScience ◽  
2020 ◽  
Vol 9 (2) ◽  
Author(s):  
Zheng Li ◽  
Michael S Barker

Abstract Background Polyploidy, or whole-genome duplications (WGDs), repeatedly occurred during green plant evolution. To examine the evolutionary history of green plants in a phylogenomic framework, the 1KP project sequenced >1,000 transcriptomes across the Viridiplantae. The 1KP project provided a unique opportunity to study the distribution and occurrence of WGDs across the green plants. As an accompaniment to the capstone publication, this article provides expanded methodological details, results validation, and descriptions of newly released datasets that will aid researchers who wish to use the extended data generated by the 1KP project. Results In the 1KP capstone analyses, we used a total evidence approach that combined inferences of WGDs from Ks and phylogenomic methods to infer and place 244 putative ancient WGDs across the Viridiplantae. Here, we provide an expanded explanation of our approach by describing our methodology and walk-through examples. We also evaluated the consistency of our WGD inferences by comparing them to evidence from published syntenic analyses of plant genome assemblies. We find that our inferences are consistent with whole-genome synteny analyses and our total evidence approach may minimize the false-positive rate throughout the dataset. Conclusions We release 383,679 nuclear gene family phylogenies and 2,306 gene age distributions with Ks plots from the 1KP capstone paper. These resources will be useful for many future analyses on gene and genome evolution in green plants.


2016 ◽  
Vol 211 (1) ◽  
pp. 172-185 ◽  
Author(s):  
Valentin Hammoudi ◽  
Georgios Vlachakis ◽  
M. Eric Schranz ◽  
Harrold A. den Burg

2019 ◽  
Author(s):  
Zheng Li ◽  
Michael S Barker

AbstractPolyploidy or whole genome duplications (WGDs) repeatedly occurred during green plant evolution. To examine the evolutionary history of green plants in a phylogenomic framework, the 1KP project sequenced over 1000 transcriptomes across the Viridiplantae. The 1KP project provided a unique opportunity to study the distribution and occurrence of WGDs across the green plants. In the 1KP capstone analyses, we used a total evidence approach that combined inferences of WGDs from Ks and phylogenomic methods to infer and place ancient WGDs. Overall, 244 putative ancient WGDs were inferred across the Viridiplantae. Here, we describe these analyses and evaluate the consistency of the WGD inferences by comparing them to evidence from published syntenic analyses of plant genome assemblies. We find that our inferences are consistent with whole genome synteny analyses and our total evidence approach may minimize the false positive rate throughout the data set. Given these resources will be useful for many future analyses on gene and genome evolution in green plants, we release 383,679 nuclear gene family phylogenies and 2,306 gene age distribution (Ks) plots from the 1KP capstone paper.


2020 ◽  
Vol 11 ◽  
Author(s):  
Na Zhao ◽  
Xiaoyang Ding ◽  
Taotao Lian ◽  
Meng Wang ◽  
Yan Tong ◽  
...  

Regulatory changes include divergence in both cis-elements and trans-factors, which play roles in organismal evolution. Whole genome duplications (WGD) followed by diploidization are a recurrent feature in the evolutionary history of angiosperms. Prior studies have shown that duplicated genes have different evolutionary fates due to variable selection constraints and results in genomic compositions with hallmarks of paleopolyploidy. The recent sequential WGDs and post-WGD evolution in the common ancestor of cultivated soybean (Glycine max) and wild soybean (Glycine soja), together with other models of gene duplication, have resulted in a highly duplicated genome. In this study, we investigated the transcriptional changes in G. soja and G. max. We identified a sizable proportion of interspecific differentially expressed genes (DEGs) and found parental expression level dominance of G. max in their F1 hybrids. By classifying genes into different regulatory divergence types, we found the trans-regulatory changes played a predominant role in transcriptional divergence between wild and cultivated soybean. The same gene ontology (GO) and protein family (Pfam) terms were found to be over-represented in DEGs and genes of cis-only between JY47 and GS, suggesting the substantial contribution of cis-regulatory divergences to the evolution of wild and cultivated soybeans. By further dissecting genes into five different duplication modes, we found genes in different duplication modes tend to accumulate different types of regulatory differences. A relatively higher proportion of cis-only regulatory divergences was detected in singleton, dispersed, proximal, and tandem duplicates than WGD duplicates and genome-wide level, which is in line with the prediction of gene balance hypothesis for the differential fates of duplicated genes post-WGD. The numbers of cis-only and trans-only regulated genes were similar for singletons, whereas there were more genes of trans-only than cis-only in the rest duplication types, especially in WGD in which there were two times more trans-only genes than that in cis-only type. Tandem duplicates showed the highest proportion of trans-only genes probably due to some special features of this class. In summary, our results demonstrate that genes in different duplication modes have different fates in transcriptional evolution underpinned by cis- or trans-regulatory divergences in soybean and likely in other paleopolyploid higher organisms.


2017 ◽  
Author(s):  
Sacha Laurent ◽  
Nicolas Salamin ◽  
Marc Robinson-Rechavi

AbstractThe short and long term effects of polyploidization on the evolutionary fate of lineages is still unclear despite much interest. First recognized in land plants, it has become clear that polyploidization is widespread in eukaryotes, notably at the origin of vertebrates and teleost fishes. Many hypotheses have been proposed to link the evolutionary success of lineages and whole genome duplications. For instance, the radiation time lag model suggests that paleopolyploidy would favour the apparition of key innovations, although the evolutionary success would not become apparent until a later dispersion event. Some results indicate that this model may be observed during land plant evolution. In this work, we test predictions of the radiation time lag model using both fossil data and molecular phylogenies in ancient and more recent teleost whole genome duplications. We fail to find any evidence of delayed evolutionary success after any of these events and conclude that paleopolyploidization still remains to be unambiguously linked to evolutionary success in fishes.


AoB Plants ◽  
2020 ◽  
Vol 12 (6) ◽  
Author(s):  
Junjie Tao ◽  
Zhuan Hao ◽  
Chunhui Huang

Abstract Ascorbic acid (AsA) is a widespread antioxidant in living organisms, and plays essential roles in the growth and development of animals and plants as well as in the response to abiotic stress tolerance. The GDP-L-galactose phosphorylase (GGP) is a key regulatory gene in plant AsA biosynthesis that can regulate the concentration of AsA at the transcriptional and translational levels. The function and regulation mechanisms of GGP have been well understood; however, the molecular evolutionary patterns of the gene remain unclear. In this study, a total of 149 homologous sequences of GGP were sampled from 71 plant species covering the major groups of Viridiplantae, and the phylogenetic relationships, gene duplication and molecular evolution analyses of the genes were systematically investigated. Results showed that GGP genes are present throughout the plant kingdom and five shared whole-genome duplications and several lineage-specific whole-genome duplications were found, which led to the rapid expansion of GGPs in seed plants, especially in angiosperms. The structure of GGP genes was more conserved in land plants, but varied greatly in green algae, indicating that GGP may have undergone great differentiation in the early stages of plant evolution. Most GGP proteins had a conserved motif arrangement and composition, suggesting that plant GGPs have similar catalytic functions. Molecular evolutionary analyses showed that GGP genes were predominated by purifying selection, indicating that the gene is functionally conserved due to its vital importance in AsA biosynthesis. Most of the branches under positive selection identified by the branch-site model were mainly in the chlorophytes lineage, indicating episodic diversifying selection may contribute to the evolution of GGPs, especially in the chlorophyte lineage. The conserved function of GGP and its rapid expansion in angiosperms maybe one of the reasons for the increase of AsA content in angiosperms, enabling angiosperms to adapt to changing environments.


2014 ◽  
Vol 369 (1648) ◽  
pp. 20130353 ◽  
Author(s):  
Kevin Vanneste ◽  
Steven Maere ◽  
Yves Van de Peer

Genome sequencing has demonstrated that besides frequent small-scale duplications, large-scale duplication events such as whole genome duplications (WGDs) are found on many branches of the evolutionary tree of life. Especially in the plant lineage, there is evidence for recurrent WGDs, and the ancestor of all angiosperms was in fact most likely a polyploid species. The number of WGDs found in sequenced plant genomes allows us to investigate questions about the roles of WGDs that were hitherto impossible to address. An intriguing observation is that many plant WGDs seem associated with periods of increased environmental stress and/or fluctuations, a trend that is evident for both present-day polyploids and palaeopolyploids formed around the Cretaceous–Palaeogene (K–Pg) extinction at 66 Ma. Here, we revisit the WGDs in plants that mark the K–Pg boundary, and discuss some specific examples of biological innovations and/or diversifications that may be linked to these WGDs. We review evidence for the processes that could have contributed to increased polyploid establishment at the K–Pg boundary, and discuss the implications on subsequent plant evolution in the Cenozoic.


Cell Reports ◽  
2012 ◽  
Vol 2 (5) ◽  
pp. 1387-1398 ◽  
Author(s):  
Param Priya Singh ◽  
Séverine Affeldt ◽  
Ilaria Cascone ◽  
Rasim Selimoglu ◽  
Jacques Camonis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document