scholarly journals Mechanism of an epibiont burden: Crepidula fornicata increases byssus thread production by Mytilus edulis

2007 ◽  
Vol 73 (1) ◽  
pp. 75-77 ◽  
Author(s):  
David W. Thieltges ◽  
Christian Buschbaum
Author(s):  
Kobina Yankson

INTRODUCTIONYonge (1962) suggests a possible universal occurrence of byssal apparatus in the post-larval spat of bivalves. Subsequent studies have revealed that the byssus thread secreted by the post-larval byssal apparatus of many bivalves is involved in settlement as well as migration by means of bysso-pelagic drifting (Sigurdsson, Titman & Davis, 1976; Blok & Tan-Maas, 1977; Board, 1983). Recent studies on the byssus and other foot glands in the early stages of bivalves have included Ostrea edulis (Cranfield, 1973 a, b, c); Pecten maximus (Gruffydd, Lane & Beaumont, 1975); Mytilus edulis (Lane & Nott, 1975; Lane, Nott & Crisp, 1982); and Chlamys varia L. (Gruffydd, Budiman & Nott, 1979)


Author(s):  
D. J. W. Lane ◽  
J. A. Nott

The development of the planktonic veliger larva of Mytilus edulis L. culminates in a swimming crawling stage during which the foot is of considerable importance in the selection of a settlement site. This stage has been described for many other bivalves (see Bayne, 1965) and has been given the term ‘pediveliger’ by Carriker (1961). The pediveliger of Mytilus edulis is negatively phototactic and positively geotactic during velar swimming (Bayne, 1964b) and is usually confined to water layers close to the substratum. The foot may be protruded during swimming and if it comes into contact with the substratum it adheres and a period of crawling commences. During crawling the larva progresses on the ventral or posterior surface of the foot by means of ciliary and muscular action. Crawling may result in attachment by secretion of the first byssus thread or alternatively the foot is withdrawn and velar swimming is continued until the next exploratory crawling phase. Mytilus larvae attach most readily to filamentous substrates in the field (Blok & Geelen, 1958; Bayne, 1964a).


Author(s):  
Anthony A. Paparo ◽  
Judith A. Murphy

The purpose of this study was to localize the red neuronal pigment in Mytilus edulis and examine its role in the control of lateral ciliary activity in the gill. The visceral ganglia (Vg) in the central nervous system show an over al red pigmentation. Most red pigments examined in squash preps and cryostat sec tions were localized in the neuronal cell bodies and proximal axon regions. Unstained cryostat sections showed highly localized patches of this pigment scattered throughout the cells in the form of dense granular masses about 5-7 um in diameter, with the individual granules ranging from 0.6-1.3 um in diame ter. Tissue stained with Gomori's method for Fe showed bright blue granular masses of about the same size and structure as previously seen in unstained cryostat sections.Thick section microanalysis (Fig.l) confirmed both the localization and presence of Fe in the nerve cell. These nerve cells of the Vg share with other pigmented photosensitive cells the common cytostructural feature of localization of absorbing molecules in intracellular organelles where they are tightly ordered in fine substructures.


Sign in / Sign up

Export Citation Format

Share Document