scholarly journals The challenge of integrative taxonomy of rare, deep-water gastropods: the genus Exilia (Neogastropoda: Turbinelloidea: Ptychatractidae)

2020 ◽  
Vol 86 (2) ◽  
pp. 120-138
Author(s):  
Yuri I Kantor ◽  
Nicolas Puillandre ◽  
Philippe Bouchet

Abstract According to a recent taxonomic revision by Kantor et al. (2001), the neogastropod genus Exilia Conrad, 1860, comprises ten mostly rare species that live at depths between 200 and 2000 m. Adult Exilia measure between 30 and 90 mm in shell length, and the genus is mostly represented in museum collections by empty shells. The abundance of this genus is low in the wild, but recent expeditions organized by the Muséum national d’Histoire naturelle have yielded several dozen specimens. These new collections include samples preserved for molecular studies. Here, we present the results of the first molecular systematic study of Exilia. Our aim was to investigate the species limits proposed by Kantor et al. (2001) on the basis of shell and anatomical characters. Analysis of DNA sequence data for the cytochrome c oxidase I gene suggests that Exilia hilgendorfi, previously considered to be a single, polymorphic and broadly distributed species, is a complex of at least six species (four of which we sequenced). Two of these species, Exilia cognata n. sp. and E. fedosovi n. sp., are described as new to science. Exilia gracilior, E. claydoni and E. prellei are resurrected from the synonymy of Exilia hilgendorfi; of these three, only the last was sequenced. Exilia vagrans is a well-defined taxon, but our molecular systematic data shows that it consists of two distinct species, which occur sympatrically off Taiwan and are strikingly similar in shell and radular morphology; due to the absence of DNA sequence data from the type locality of E. vagrans (Vanuatu), it is unclear to which of these two species the name would apply. Exilia karukera n. sp., which is conchologically very similar to E. vagrans, was discovered off Guadeloupe, represents the first record of the genus from the Atlantic. For E. elegans, which was previously known only from a single shell, we provide new data including new distributional records (South Africa and the Mozambique Channel), details of the radula and DNA sequence data.

1997 ◽  
Vol 29 (5) ◽  
pp. 441-454 ◽  
Author(s):  
Urs Groner ◽  
Scott LaGreca

AbstractRamalina panizzei De Not. is reported from Switzerland and north of the Alps for the first time. Recent collections and thalli found amongst specimens of R. fastigiata (Pers.) Ach. are described; the species is obviously not restricted to the Mediterranean. The confusion in several herbaria around this and related corticolous species, particularly R. subgeniculata Nyl. and R. fastigiata, can be traced back to imprecise original and subsequent diagnoses, all of which lack a clear species delimitation. Similarities and differences of these species are discussed. In addition, sequences from the rDNA ITS regions were determined for two individuals of R. panizzei and two of R. fastigiata, including one of each from a site where both species grow intermixed. Kimura 2-parameter genetic-distance estimates indicate that R. panizzei and R. fastigiata are as different from each other as either is from the reference species R. siliquosa (Hudson) A. L. Sm. s.l. A broad-based taxonomic revision of involved species is not possible due to the limited number of analyses, but the results demonstrate the potential for using DNA sequence data to investigate species-level questions in lichens. Based on morphology, chemistry, and DNA sequence data, R. panizzei is retained as a distinct species.


2011 ◽  
Vol 43 (6) ◽  
pp. 561-567 ◽  
Author(s):  
K. PAPONG ◽  
G. KANTVILAS ◽  
H. T. LUMBSCH

AbstractThe phylogenetic placement of the genus Maronina was studied, based chiefly on phenotypic characters such as thallus colour and anatomy, secondary chemistry, the anatomy of the excipulum and the ascus-type. DNA sequence data of mitochondrial and nuclear ribosomal loci from some of the species support the hypothesis that Maronina is nested within Protoparmelia. Hence, Maronina is reduced to synonymy with Protoparmelia. Comparison of genetic distances suggests that the two varieties within M. orientalis should be regarded as distinct species. Consequently, the new combinations Protoparmelia australiensis (Hafellner & R. W. Rogers) Kantvilas et al., P. corallifera (Kantvilas & Papong) Kantvilas et al., P. hesperia (Kantvilas & Elix) Kantvilas et al., P. multifera (Nyl.) Kantvilas et al., and P. orientalis (Kantvilas & Papong) Kantvilas et al. are proposed.


Zootaxa ◽  
2020 ◽  
Vol 4732 (1) ◽  
pp. 99-116
Author(s):  
DANIARA COLPANI ◽  
CÉSAR JOÃO BENETTI ◽  
NEUSA HAMADA ◽  
VANDERLY ANDRADE-SOUZA ◽  
KARINE SCHOENINGER ◽  
...  

In most species of Gyrinidae, the immature stages are unknown, especially due to the difficulty in collecting the juveniles and assigning them to a particular species. Molecular association is a feasible technique that may solve this problem. Recent studies have used DNA sequence data, specifically the gene cytochrome oxidase subunit I (COI), to associate immature and adult stages, thus enabling the description of the former. The objectives of this study were (1) to describe and illustrate the immature stages of Gyrinus (Neogyrinus) rozei Ochs, 1953 including morphometric, chaetotaxic and bionomic information, and (2) to assess the usefulness of the gene COI to associate immatures and adults of Gyrinus. The studied specimens were collected in Roraima state, northern Brazil. The association of immature and adult stages was done either by rearing adults under laboratory conditions or by using DNA sequence data (COI). Eggs were described based on scanning electron microscopy; they are distinguished mainly by several features of chorion, micropyle and reticulation. Larvae of G. (N.) rozei can be distinguished from those of other Neotropical Gyrinidae by a combination of several characters, including the stipes with five robust hook-like additional setae on the dorsointernal margin, and the lacinia roughly hook-shaped. The pupa is similar to that of G. argentinus Steinhel, 1869, except for the number of setae on the body. The first record of the parasitoid wasp Melanosmicra sp. (Hymenoptera: Chalcididae) on a Gyrinus species is also provided. 


Phytotaxa ◽  
2015 ◽  
Vol 204 (4) ◽  
pp. 253 ◽  
Author(s):  
YONG-YU SU ◽  
YI-LANG HUANG ◽  
LI-JUN CHEN ◽  
PEI-WEN ZHANG ◽  
Zhong-Jian Liu ◽  
...  

A new orchid species, Liparis wenshanensis, discovered in Yunnan, China is described and illustrated in this study based on morphological and molecular analyses. A detailed comparison between the newly discovered orchid and other members of the genus, Liparis, was conducted. The new plant is characterized by the combination of the following features: a long rachis with 45 to 55 flowers; white sepals, petals and column; a greenish lip with a purplish center; strongly recurved and revolute dorsal sepals and petals; strongly recurved, oblong lateral sepals; a cordate lip that is strongly deflexed below the middle, with a two-lobed apex and a two-lobed callus at the base; an arcuate column with a lamella extending along the center almost to the stigma, and with a pair of broad wings toward the apex. These features distinguish the new orchid from all other known species of Liparis. We proceeded to a phylogenetic analysis to ascertain the systematic position of this enigmatic species. Molecular analyses based on nuclear ribosomal ITS and plastid matK DNA sequence data supports the recognition of L. wenshanensis as a distinct species.


2016 ◽  
Vol 54 (11) ◽  
pp. 2813-2819 ◽  
Author(s):  
Kerry O'Donnell ◽  
Deanna A. Sutton ◽  
Nathan Wiederhold ◽  
Vincent A. R. G. Robert ◽  
Pedro W. Crous ◽  
...  

Multilocus DNA sequence data were used to assess the genetic diversity and evolutionary relationships of 67Fusariumstrains from veterinary sources, most of which were from the United States. Molecular phylogenetic analyses revealed that the strains comprised 23 phylogenetically distinct species, all but two of which were previously known to infect humans, distributed among eight species complexes. The majority of the veterinary isolates (47/67 = 70.1%) were nested within theFusarium solanispecies complex (FSSC), and these included 8 phylospecies and 33 unique 3-locus sequence types (STs). Three of the FSSC species (Fusarium falciforme,Fusarium keratoplasticum, andFusariumsp. FSSC 12) accounted for four-fifths of the veterinary strains (38/47) and STs (27/33) within this clade. Most of theF. falciformestrains (12/15) were recovered from equine keratitis infections; however, strains ofF. keratoplasticumandFusariumsp. FSSC 12 were mostly (25/27) isolated from marine vertebrates and invertebrates. Our sampling suggests that theFusarium incarnatum-equisetispecies complex (FIESC), with eight mycoses-associated species, may represent the second most important clade of veterinary relevance withinFusarium. Six of the multilocus STs within the FSSC (3+4-eee, 1-b, 12-a, 12-b, 12-f, and 12-h) and one each within the FIESC (1-a) and theFusarium oxysporumspecies complex (ST-33) were widespread geographically, including three STs with transoceanic disjunctions. In conclusion, fusaria associated with veterinary mycoses are phylogenetically diverse and typically can only be identified to the species level using DNA sequence data from portions of one or more informative genes.


2010 ◽  
Vol 23 (2) ◽  
pp. 69 ◽  
Author(s):  
Josephine Piggin ◽  
Jeremy J. Bruhl

Relationships between Callitris, Actinostrobus and Neocallitropsis, members of the southern hemisphere ‘callitroid clade’ (Callitroideae sensu Gadek et al. 2000) of Cupressaceae, are estimated using a database of 42 morphological and anatomical characters. Callitris is paraphyletic, with Actinostrobus being closer to a large well supported clade of 15 Australian species of Callitris than are C. baileyi, C. macleayana and the New Caledonian taxa. The New Caledonian unispecific endemic, Neocallitropsis, is sister to the clade comprising all Callitris and Actinostrobus species. There are marked differences between this estimate of the phylogeny and two recent estimates based on nuclear encoded DNA sequence data and non-molecular data, respectively, but some simlarities to the molecular estimate are highlighted and lead us here to formally include Actinostrobus within Callitris. Further molecular data are needed to test these results and explore the cause of the conflict between these estimates of the phylogeny within the group, and the status of Neocallitropsis.


Author(s):  
Shinichi Nakahara ◽  
Thamara Zacca ◽  
Fernando M.S. Dias ◽  
Diego R. Dolibaina ◽  
Lei Xiao ◽  
...  

We provide the first comprehensive taxonomic revision of the poorly known South American butterfly genus Zischkaia Forster, 1964, hitherto regarded as including three described species. A phylogenetic analysis based on DNA sequence data shows that Zischkaia is monophyletic and consists of two morphologically diagnosable clades. Morphological characters and DNA ‘barcodes’ support the recognition of twelve species in the genus, a significant increase even for the relatively poorly studied subtribe Euptychiina. Consequently, nine new species are described and named herein, including Z. arctoa Nakahara, sp. nov., Z. chullachaki Nakahara & Zacca, sp. nov., Z. baku Zacca, Dolibaina & Dias, sp. nov., Z. arenisca Nakahara, Willmott & Hall, sp. nov., Z. argyrosflecha Nakahara, L. Miller & Huertas, sp. nov., Z. abanico Nakahara & Petit, sp. nov., Z. josti Nakahara & Kleckner, sp. nov., Z. mielkeorum Dolibaina, Dias & Zacca, sp. nov. and Z. warreni Dias, Zacca & Dolibaina, sp. nov. In addition, a neotype is designated for Satyrus pacarus Godart, [1824], and lectotypes are designated for Euptychia amalda Weymer, 1911, Euptychia fumata Butler, 1867 and Euptychia saundersii Butler, 1867.


Phytotaxa ◽  
2020 ◽  
Vol 436 (2) ◽  
pp. 193-195
Author(s):  
DARLENE M. O’NEILL ◽  
SUSAN B. FARMER ◽  
AARON FLODEN ◽  
JAYNE LAMPLEY ◽  
EDWARD E. SCHILLING

Trillium Linnaeus (1753: 339) species have a reputation for being difficult to distinguish from one another, both on morphological (e.g. Freeman 1985, Schilling et al. 2019) and initial studies with standard plastid markers (Osaloo et al. 1999). Thus, the species that is sister to the rest of the Parideae, Pseudotrillium rivale (Watson 1885: 378) Farmer (2002: 687), was only recognized to be distinctive after DNA sequence data became available (Farmer & Schilling 2002). In the somewhat similar case discussed here, an entity that was considered to be only a form or variety of one species, T. ovatum Pursh (1803: 216), has turned out to be so genetically distinct that it is not even placed in the same clade as T. ovatum (Farmer 2006, Lampley et al. unpubl.).


ZooKeys ◽  
2020 ◽  
Vol 975 ◽  
pp. 11-49
Author(s):  
Lars Hendrich ◽  
Chris H.S. Watts ◽  
Michael Balke

Morphology and mitochondrial DNA sequence data are used to reassess the taxonomy of Australian diving beetles previously assigned to the genera Uvarus Guignot, 1939 and Gibbidessus Watts, 1978. Gibbidessus was described as a monotypic genus for Gibbidessus chipi Watts, 1978. The genus is significantly extended here. Based on molecular systematic evidence, Uvarus pictipes (Lea, 1899) is transferred to Gibbidessus. Gibbidessus chipi and Gibbidessus pictipescomb. nov. are redescribed, and six new species are described: Gibbiddessus atomussp. nov. (SW Australia, Northcliffe area) [the smallest epigean diving beetle in Australia], G. davidisp. nov. (SW Australia), G. drikdrikensissp. nov. (Victoria), G. kangarooensissp. nov. (SA Kangaroo Island), G. pederzaniisp. nov. (SW Australia, Nannup area), and G. rottnestensissp. nov. (SW Australia). Species are delineated using characters such as male genital structure and beetle size, shape and colour pattern. Mitochondrial Cox1 data for 27 individuals, representing five species, were generated, and revealed clusters congruent with the morphological evidence. Gibbidessus occur in southern Australia, with the centre of diversification in the isolated peat- and wetlands of SW Australia. All species occur in very shallow water of seasonal, exposed or half-shaded wetlands and flooded meadows.


Sign in / Sign up

Export Citation Format

Share Document