Phylogeny reconstruction of Callitris Vent. (Cupressaceae) and its allies leads to inclusion of Actinostrobus within Callitris

2010 ◽  
Vol 23 (2) ◽  
pp. 69 ◽  
Author(s):  
Josephine Piggin ◽  
Jeremy J. Bruhl

Relationships between Callitris, Actinostrobus and Neocallitropsis, members of the southern hemisphere ‘callitroid clade’ (Callitroideae sensu Gadek et al. 2000) of Cupressaceae, are estimated using a database of 42 morphological and anatomical characters. Callitris is paraphyletic, with Actinostrobus being closer to a large well supported clade of 15 Australian species of Callitris than are C. baileyi, C. macleayana and the New Caledonian taxa. The New Caledonian unispecific endemic, Neocallitropsis, is sister to the clade comprising all Callitris and Actinostrobus species. There are marked differences between this estimate of the phylogeny and two recent estimates based on nuclear encoded DNA sequence data and non-molecular data, respectively, but some simlarities to the molecular estimate are highlighted and lead us here to formally include Actinostrobus within Callitris. Further molecular data are needed to test these results and explore the cause of the conflict between these estimates of the phylogeny within the group, and the status of Neocallitropsis.

2020 ◽  
Author(s):  
Patrick J. Brownsey ◽  
Daniel J. Ohlsen ◽  
Lara D. Shepherd ◽  
Whitney L. M. Bouma ◽  
Erin L. May ◽  
...  

Five indigenous species of Pellaea in Australasia belong to section Platyloma. Their taxonomic history is outlined, morphological, cytological and genetic evidence for their recognition reviewed, and new morphological and chloroplast DNA-sequence data provided. Australian plants of P. falcata (R.Br.) Fée are diploid and have longer, narrower pinnae than do New Zealand plants previously referred to P. falcata, which are tetraploid. Evidence indicates that P. falcata does not occur in New Zealand, and that collections so-named are P. rotundifolia (G.Forst.) Hook. Chloroplast DNA sequences are uninformative in distinguishing Australian P. falcata from New Zealand P. rotundifolia, but show that Australian P. nana is distinct from both. Sequence data also show that Australian and New Zealand populations of P. calidirupium Brownsey & Lovis are closely related, and that Australian P. paradoxa (R.Br.) Hook. is distinct from other Australian species. Although P. falcata is diploid and P. rotundifolia tetraploid, P. calidirupium, P. nana (Hook.) Bostock and P. paradoxa each contain multiple ploidy levels. Diploid populations of Pellaea species are confined to Australia, and only tetraploids are known in New Zealand. Evolution of the group probably involved hybridisation, autoploidy, alloploidy, and possibly apomixis. Further investigation is required to resolve the status of populations from Mount Maroon, Queensland and the Kermadec Islands.


Phytotaxa ◽  
2018 ◽  
Vol 350 (1) ◽  
pp. 42 ◽  
Author(s):  
GALINA V. DEGTJAREVA ◽  
MICHAEL G. PIMENOV ◽  
TAHIR H. SAMIGULLIN

The systematic position of three Apiaceae-Apioideae taxa, Pinacantha porandica, Ladyginia bucharica and Peucedanum mogoltavicum, from Middle Asia and Afghanistan, is clarified based on nrITS DNA sequence data. In the molecular phylogenetic tree, the monotypic Pinacantha is placed in unresolved position within the Ferulinae. Although there is no morphological information on essential characters, we propose a new position of Pinacantha porandica within the genus Ferula. As a result a new combination Ferula porandica is proposed, with a new section Pinacantha to accommodate it. The attribution of Peucedanum mogoltavicum to Ferula has been confirmed, its correct name being Ferula lithophila. The genus Ladyginia should not be included in Ferula, its closest relatives being Mozaffariania and Glaucosciadium from the Glaucosciadium Clade.


2012 ◽  
Vol 25 (3) ◽  
pp. 210 ◽  
Author(s):  
G. Kantvilas ◽  
H. T. Lumbsch

The status of the genera of the lichen-forming fungal family Megalosporaceae is re-examined. DNA-sequence data utilising three loci and anatomical observations pertaining to the hymenium, asci and ascospores support Megaloblastenia as a distinct genus. Austroblastenia is not supported by molecular, morphological or anatomical data, which suggest that it should be subsumed within Megalospora. Consequently, the new combinations, Megalospora pauciseptata (Shirley) Kantvilas & Lumbsch and M. pupa (Sipman) Kantvilas & Lumbsch, are proposed.


2020 ◽  
Vol 86 (2) ◽  
pp. 120-138
Author(s):  
Yuri I Kantor ◽  
Nicolas Puillandre ◽  
Philippe Bouchet

Abstract According to a recent taxonomic revision by Kantor et al. (2001), the neogastropod genus Exilia Conrad, 1860, comprises ten mostly rare species that live at depths between 200 and 2000 m. Adult Exilia measure between 30 and 90 mm in shell length, and the genus is mostly represented in museum collections by empty shells. The abundance of this genus is low in the wild, but recent expeditions organized by the Muséum national d’Histoire naturelle have yielded several dozen specimens. These new collections include samples preserved for molecular studies. Here, we present the results of the first molecular systematic study of Exilia. Our aim was to investigate the species limits proposed by Kantor et al. (2001) on the basis of shell and anatomical characters. Analysis of DNA sequence data for the cytochrome c oxidase I gene suggests that Exilia hilgendorfi, previously considered to be a single, polymorphic and broadly distributed species, is a complex of at least six species (four of which we sequenced). Two of these species, Exilia cognata n. sp. and E. fedosovi n. sp., are described as new to science. Exilia gracilior, E. claydoni and E. prellei are resurrected from the synonymy of Exilia hilgendorfi; of these three, only the last was sequenced. Exilia vagrans is a well-defined taxon, but our molecular systematic data shows that it consists of two distinct species, which occur sympatrically off Taiwan and are strikingly similar in shell and radular morphology; due to the absence of DNA sequence data from the type locality of E. vagrans (Vanuatu), it is unclear to which of these two species the name would apply. Exilia karukera n. sp., which is conchologically very similar to E. vagrans, was discovered off Guadeloupe, represents the first record of the genus from the Atlantic. For E. elegans, which was previously known only from a single shell, we provide new data including new distributional records (South Africa and the Mozambique Channel), details of the radula and DNA sequence data.


2020 ◽  
Vol 156 (4) ◽  
pp. 253-256
Author(s):  
H.C.J. Godfray

Chorebus cyparissa (Nixon) is added to the British list based on a specimen caught in a Malaise trap in Norfolk, England in 1983. It is also recorded from Bulgaria and, based on DNA sequence data, from Belarus & Turkey. Chorebus navicularis (Nees) is deleted from the British list; its inclusion was probably due to a misidentification and the status of the species itself is uncertain.


Nematology ◽  
2017 ◽  
Vol 19 (3) ◽  
pp. 351-374 ◽  
Author(s):  
Kerrie A. Davies ◽  
Weimin Ye ◽  
Barbara Center ◽  
Natsumi Kanzaki ◽  
Faerlie Bartholomaeus ◽  
...  

Aphelenchoidid nematodes were collected from the sycones ofFicussubgenusPharmacosyceafrom Central America. Two new species ofFicophaguswere recovered, and are described herein asF. maximasp. n. andF. yoponensissp. n. fromFicus maximaandF. yoponensis, respectively. They are differentiated from other species of the genus by a combination of morphological characters including having C-shaped females and spiral males, EP opening close to the lips, a short to long post-uterine sac, spicule characters, three pairs of subventral caudal papillae, DNA sequence data, biogeographical range, and host wasp andFicusspecies affiliation. The new species are differentiated from each other by spicule characters, length of the post-uterine sac, spermatheca shape, and female tail shape. In addition, three morphospecies were collected from sycones ofFicus glabrata,F. insipidaandF. tonduzii, respectively. Their morphological descriptions are presented but these taxa are not formally named as they currently lack molecular data.


Zootaxa ◽  
2011 ◽  
Vol 2946 (1) ◽  
pp. 29 ◽  
Author(s):  
ANTHONY C. GILL ◽  
RANDALL D. MOOI

Wiley et al. (2011) begin their critique of our paper (Mooi & Gill, 2010) with an assertion: “we need to make itclear that the foundation of their arguments rests not on scientific rigor, but rather on opinions about the re-classification of fishes using molecular data. This bias is the reason that they only targeted researchers who proposed changes in the higher-level taxonomy of fishes using phylogenetic hypotheses based on DNA sequence data (Miya et al. 2007, Smith & Craig 2007, Thacker 2009). In criticizing these studies, they do not suggest any alternative relationships or provide any counter evidence to the proposed relationships.” And on page 8, they apparently read our thoughts (aside from the title, none of the words in quotations was written by us in that context) and concluded: “Mooi & Gill entitled their paper “A crisis in fish systematics” because they long for the days when “real” ichthyologists found “meaningful” characters and “true” relationships.” Finally (p. 9), they contend that “Mooi & Gill’s various studies are usually focused on Johnson & Patterson’s (1993: 555) “disparate twigs of the [percomorph] tree,” whereas the explicit studies they criticize are large-scale and taxon rich datasets that have not otherwise been analyzed in Percomorpha.”


2002 ◽  
Vol 33 (3) ◽  
pp. 325-336 ◽  
Author(s):  
Richard Baker ◽  
Rudolf Meier

AbstractThe results of a cladistic analysis based on a combined character matrix consisting of the morphological data set of Meier & Hilger (2000) and the molecular data set of Baker & al. (2001) is presented. The data set is subjected to an extensive sensitivity analysis and equal character weighting is found to perform best according to character incongruence and tree support. The sensitivity analysis also reveals a remarkable stability of the preferred tree with 25 of the 36 tree nodes supported under 16 different analysis conditions. Cyrtodiopsis is synonymized with Teleopsis and Shillito's (1971) synonymization of Trichodiopsis and Chaetodiopsis with Diasemopsis is confirmed. Morphological and DNA sequence data agree on all major clades and conflict is restricted to the placement of two species within their respective genera. Only in one case can the conflict be confidently resolved. Partitioned Bremer Support values reveal that 90% of the tree support is generated by the DNA sequence characters, although the average morphological character contributes twice the support of an average molecular character. The evolution of eye-stalk morphology and of a meiotic drive chromosome system in Teleopsis is briefly discussed in the light of the phylogenetic tree.


1998 ◽  
Vol 30 (4-5) ◽  
pp. 415-425 ◽  
Author(s):  
Ulf Arup ◽  
Martin Grube

AbstractA first hypothesis for the phylogeny of Lecanora subgen. Placodium is presented by using molecular data. Previous evolutionary ideas and classification concepts for this group with non-molecular data are re-investigated using DNA sequence data from the nuclear ITS and 5.8S regions. Using Protoparmelia as an outgroup, the Lecanora subfusca group together with the L. rupicola group appear as a sister group to assemblages with lobate species. Subgen. Placodium as currently accepted, is not monophyletic. Molecular data suggest that the Lecanora dispersa group and the L. polytropa group are widened by lobate species and there is evidence from the ITS data that the monotypic genus Arctopeltis Poelt is closely related to the L. dispersa group. A congruence between molecular data and secondary chemistry supports the broader concept of the L. dispersa group suggested by the molecular data.


2021 ◽  
Author(s):  
◽  
Gregorio Delgado

The division Ascomycota(Fungi) contains a large number of taxa known to reproduce only asexually by the formation of conidia or other non-motile propagules produced by mitotic cellular devisions. They are called anamorphic, mitosporic, asexual or conidial fungi and ecologically, they are often found associated with plant debris in different stages of decay. In general, saprobic anamorphs of ascomycetous affinities are poorly studied and their outstanding diversity is currently underexplored. Phylogenetic relationships are unknown for many of them and they are still largely underrepresented in the current phylogenetic classification system of Fungi, with many morphologically defined anamorphic taxa still awaiting taxonomic reassessment in the light of molecular approaches. The increasing usage of molecular markers combined with robust statistical methods has allowed their phylogenetic affinities to be revealed and to gradually incorporate many of them into the different taxonomic groups of the division Ascomycota. However, the phylogenetic placement and taxonomic status of a large number of saprobic taxa remain unresolved due to the lack of DNA sequence data. The present dissertation aims to explore the rich but understudied diversity of those anamorphic fungi traditionally known as hyphomycetes that inhabit dead plant debris. It consists of five publications in which a polyphasic approach integrating morphological, developmental, cultural and molecular data was used to incorporate novel or incertae sedis taxa within Ascomycota and to make more sound decisions regarding their taxonomic status. Specific objectives include: 1. the collection, isolation and morphological characterization of selected anamorphic fungi representing putative new or interesting taxa of uncertain phylogenetic placement; 2. the generation of novel DNA sequence data to infer their phylogenetic relationships and to resolve their taxonomic affinities within Ascomycota; 3. the testing of any previously available morphologically based hypotheses on their putative position, generic placement or relationships with teleomorphic, pleomorphic or other anamorphic taxa; and 4. the determination of their generic validity, monophyly and taxonomic boundaries using molecular data and phylogenetic analyses methods. Materials studied in these five projects consisted of specimens collected during field work carried out by the author or collaborators in different countries including USA, the Czech Republic and Panama between the years 2014 and 2017. The target substrates were dead leaves of different palm trees, dead wood and bark of pines and twigs or stems of unknown shrubs and woody vines that are all known to harbor a rich saprobic mycobiota. Putative novelties or anamorphic taxa with unknown or poorly studied phylogenetic affinities were selected for further morphological and molecular investigation. Micromorphological studies were based on fungal structures observed on natural substrate, herbarium specimens and in culture. DNA was extracted from cultures and PCR amplification followed by Sanger sequencing was carried out using relevant molecular markers employed in fungal phylogenetic studies. Newly obtained DNA sequence data were analyzed following a standard phylogenetic analysis pipeline and phylogenetic relationships were reconstructed using character-based methods such as Maximum Likelihood and Bayesian inference. Conclusion is that anamorphic Ascomycota inhabiting dead plant debris represents a largely untapped source of biodiversity and information still in need of further exploration. A new capnodiaceous genus Castanedospora, seven new species named Taeniolella sabalicola, Hermatomyces bifurcatus, H. constrictus, H. megasporus, H. sphaericoides, H. verrucosus and Septonema lohmanii, and two new combinations, Castanedospora pachyanthicola and H. reticulatus, are proposed based on morphological and DNA sequence data. Molecular phylogenetics was confirmed as the tool of choice for the inference of relationships in novel or incertae sedis anamorphic fungi that are otherwise difficult to assess in the absence of a teleomorphic state. They were first resolved or revisited for several saprobic species such as Ernakulamia cochinensis, H. sphaericus, H. tucumanensis or Septonema fasciculare in a suitable framework for phylogenetic hypothesis testing. Molecular data allowed to fully incorporate all these taxa in Ascomycota, particularly within the classes Dothideomycetes and Sordariomycetes, and to provide a foundation for better taxonomic decisions on their classification. Large and polyphyletic genera such as Taeniolella, Sporidesmium and Septonema, partially treated in this work and containing mostly saprobic species of obscure affinities, remained in need of further investigation.


Sign in / Sign up

Export Citation Format

Share Document