scholarly journals Control of Rice Embryo Development, Shoot Apical Meristem Maintenance, and Grain Yield by a Novel Cytochrome P450

2013 ◽  
Vol 6 (6) ◽  
pp. 1945-1960 ◽  
Author(s):  
Weibing Yang ◽  
Mingjun Gao ◽  
Xin Yin ◽  
Jiyun Liu ◽  
Yonghan Xu ◽  
...  
Cell Reports ◽  
2015 ◽  
Vol 10 (11) ◽  
pp. 1819-1827 ◽  
Author(s):  
Yuyi Zhou ◽  
Minami Honda ◽  
Hongliang Zhu ◽  
Zhonghui Zhang ◽  
Xinwei Guo ◽  
...  

2006 ◽  
Vol 141 (4) ◽  
pp. 1349-1362 ◽  
Author(s):  
Sharon Kessler ◽  
Brad Townsley ◽  
Neelima Sinha

2016 ◽  
Vol 113 (33) ◽  
pp. 9375-9380 ◽  
Author(s):  
Dongming Li ◽  
Xing Fu ◽  
Lin Guo ◽  
Zhigang Huang ◽  
Yongpeng Li ◽  
...  

Plant meristems are responsible for the generation of all plant tissues and organs. Here we show that the transcription factor (TF) FAR-RED ELONGATED HYPOCOTYL3 (FHY3) plays an important role in both floral meristem (FM) determinacy and shoot apical meristem maintenance in Arabidopsis, in addition to its well-known multifaceted roles in plant growth and development during the vegetative stage. Through genetic analyses, we show that WUSCHEL (WUS) and CLAVATA3 (CLV3), two central players in the establishment and maintenance of meristems, are epistatic to FHY3. Using genome-wide ChIP-seq and RNA-seq data, we identify hundreds of FHY3 target genes in flowers and find that FHY3 mainly acts as a transcriptional repressor in flower development, in contrast to its transcriptional activator role in seedlings. Binding motif-enrichment analyses indicate that FHY3 may coregulate flower development with three flower-specific MADS-domain TFs and four basic helix–loop–helix TFs that are involved in photomorphogenesis. We further demonstrate that CLV3, SEPALLATA1 (SEP1), and SEP2 are FHY3 target genes. In shoot apical meristem, FHY3 directly represses CLV3, which consequently regulates WUS to maintain the stem cell pool. Intriguingly, CLV3 expression did not change significantly in fhy3 and phytochrome B mutants before and after light treatment, indicating that FHY3 and phytochrome B are involved in light-regulated meristem activity. In FM, FHY3 directly represses CLV3, but activates SEP2, to ultimately promote FM determinacy. Taken together, our results reveal insights into the mechanisms of meristem maintenance and determinacy, and illustrate how the roles of a single TF may vary in different organs and developmental stages.


2013 ◽  
Vol 54 (3) ◽  
pp. 302-312 ◽  
Author(s):  
Michael Pautler ◽  
Wakana Tanaka ◽  
Hiro-Yuki Hirano ◽  
David Jackson

Development ◽  
2021 ◽  
Vol 148 (24) ◽  
Author(s):  
Wakana Tanaka ◽  
Suzuha Ohmori ◽  
Naoto Kawakami ◽  
Hiro-Yuki Hirano

ABSTRACT Plant development depends on the activity of pluripotent stem cells in meristems, such as the shoot apical meristem and the flower meristem. In Arabidopsis thaliana, WUSCHEL (WUS) is essential for stem cell homeostasis in meristems and integument differentiation in ovule development. In rice (Oryza sativa), the WUS ortholog TILLERS ABSENT 1 (TAB1) promotes stem cell fate in axillary meristem development, but its function is unrelated to shoot apical meristem maintenance in vegetative development. In this study, we examined the role of TAB1 in flower development. The ovule, which originates directly from the flower meristem, failed to differentiate in tab1 mutants, suggesting that TAB1 is required for ovule formation. Expression of a stem cell marker was completely absent in the flower meristem at the ovule initiation stage, indicating that TAB1 is essential for stem cell maintenance in the ‘final’ flower meristem. The ovule defect in tab1 was partially rescued by floral organ number 2 mutation, which causes overproliferation of stem cells. Collectively, it is likely that TAB1 promotes ovule formation by maintaining stem cells at a later stage of flower development.


Development ◽  
1993 ◽  
Vol 119 (3) ◽  
pp. 823-831 ◽  
Author(s):  
M. K. Barton ◽  
R. S. Poethig

The primary shoot apical meristem of Arabidopsis is initiated late in embryogenesis, after the initiation of the cotyledons. We have identified a gene, called SHOOT MERISTEMLESS, which is critical for this process. shoot meristemless mutant seedlings lack a shoot apical meristem but are otherwise healthy and viable. The anatomy of mutant embryos demonstrates that the shoot meristemless-1 mutation completely blocks the initiation of the shoot apical meristem, but has no other obvious effects on embryo development. The failure of shoot meristemless tissue to regenerate shoots in tissue culture suggests that this gene regulates adventitious shoot meristem formation, as well as embryonic shoot meristem formation.


Sign in / Sign up

Export Citation Format

Share Document