scholarly journals Tissue-specific regulation of the rabbit 15-lipoxygenase gene in erythroid cells by a transcriptional silencer

1995 ◽  
Vol 23 (18) ◽  
pp. 3664-3672 ◽  
Author(s):  
Jim O'Prey ◽  
Paul R. Harrison
Blood ◽  
1998 ◽  
Vol 91 (2) ◽  
pp. 695-705 ◽  
Author(s):  
Lingyun Zhu ◽  
Samir B. Kahwash ◽  
Long-Sheng Chang

Abstract Erythrocyte protein 4.2 (P4.2) is an important component of the erythrocyte membrane skeletal network with an undefined biologic function. Presently, very little is known about the expression of the P4.2 gene during mouse embryonic development and in adult animals. By using the Northern blot and in situ hybridization techniques, we have examined the spatial and temporal expression of the P4.2 gene during mouse development. We show that expression of the mouse P4.2 gene is temporally regulated during embryogenesis and that the P4.2 mRNA expression pattern coincides with the timing of erythropoietic activity in hematopoietic organs. P4.2 transcripts are first detected in embryos on day 7.5 of gestation and are localized exclusively in primitive erythroid cells of yolk sac origin. These erythroid cells remain to be the only source for P4.2 expression until the switch of the hematopoietic producing site to fetal liver. In mid- and late-gestation periods, P4.2 mRNA expression is restricted to the erythroid cells in fetal liver and to circulating erythrocytes. Around and after birth, the site for P4.2 expression is switched from liver to spleen and bone marrow, and P4.2 transcripts are only detected in cells of the erythroid lineage. These results provide the evidence for specific P4.2 expression in erythroid cells. In addition, the timing and pattern of expression of the P4.2 gene suggest the specific regulation of the P4.2 gene.


2017 ◽  
Vol 1 (11) ◽  
pp. 685-692 ◽  
Author(s):  
Laura J. Norton ◽  
Alister P. W. Funnell ◽  
Jon Burdach ◽  
Beeke Wienert ◽  
Ryo Kurita ◽  
...  

Key Points KLF1 directly drives expression of ZBTB7A, a key repressor of fetal γ-globin gene expression, in erythroid cells. An erythroid-specific regulation mechanism allows upregulation of a novel ZBTB7A transcript in erythroid cells.


2006 ◽  
Vol 26 (5) ◽  
pp. 1589-1597 ◽  
Author(s):  
Denis Klochkov ◽  
Héctor Rincón-Arano ◽  
Elena S. Ioudinkova ◽  
Viviana Valadez-Graham ◽  
Alexey Gavrilov ◽  
...  

ABSTRACT The tissue-specific chicken α-globin gene domain represents one of the paradigms, in terms of its constitutively open chromatin conformation and the location of several regulatory elements within the neighboring housekeeping gene. Here, we show that an 0.2-kb DNA fragment located ∼4 kb upstream to the chicken α-globin gene cluster contains a binding site for the multifunctional protein factor CTCF and possesses silencer activity which depends on CTCF binding, as demonstrated by site-directed mutagenesis of the CTCF recognition sequence. CTCF was found to be associated with this recognition site in erythroid cells but not in lymphoid cells where the site is methylated. A functional promoter directing the transcription of the apparently housekeeping ggPRX gene was found 120 bp from the CTCF-dependent silencer. The data are discussed in terms of the hypothesis that the CTCF-dependent silencer stabilizes the level of ggPRX gene transcription in erythroid cells where the promoter of this gene may be influenced by positive cis-regulatory signals activating α-globin gene transcription.


Blood ◽  
1998 ◽  
Vol 91 (2) ◽  
pp. 695-705
Author(s):  
Lingyun Zhu ◽  
Samir B. Kahwash ◽  
Long-Sheng Chang

Erythrocyte protein 4.2 (P4.2) is an important component of the erythrocyte membrane skeletal network with an undefined biologic function. Presently, very little is known about the expression of the P4.2 gene during mouse embryonic development and in adult animals. By using the Northern blot and in situ hybridization techniques, we have examined the spatial and temporal expression of the P4.2 gene during mouse development. We show that expression of the mouse P4.2 gene is temporally regulated during embryogenesis and that the P4.2 mRNA expression pattern coincides with the timing of erythropoietic activity in hematopoietic organs. P4.2 transcripts are first detected in embryos on day 7.5 of gestation and are localized exclusively in primitive erythroid cells of yolk sac origin. These erythroid cells remain to be the only source for P4.2 expression until the switch of the hematopoietic producing site to fetal liver. In mid- and late-gestation periods, P4.2 mRNA expression is restricted to the erythroid cells in fetal liver and to circulating erythrocytes. Around and after birth, the site for P4.2 expression is switched from liver to spleen and bone marrow, and P4.2 transcripts are only detected in cells of the erythroid lineage. These results provide the evidence for specific P4.2 expression in erythroid cells. In addition, the timing and pattern of expression of the P4.2 gene suggest the specific regulation of the P4.2 gene.


1991 ◽  
Vol 266 (36) ◽  
pp. 24613-24620
Author(s):  
A. Subramaniam ◽  
W.K. Jones ◽  
J. Gulick ◽  
S. Wert ◽  
J. Neumann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document