scholarly journals Transcriptional up-regulation of the mouse cytosolic glutathione peroxidase gene in erythroid cells is due to a tissue-specific 3' enhancer containing functionally important CACC/GT motifs and binding sites for GATA and Ets transcription factors.

1994 ◽  
Vol 14 (1) ◽  
pp. 868 ◽  
Author(s):  
J O'Prey ◽  
S Ramsay ◽  
I Chambers ◽  
P R Harrison
1993 ◽  
Vol 13 (10) ◽  
pp. 6290-6303 ◽  
Author(s):  
J O'Prey ◽  
S Ramsay ◽  
I Chambers ◽  
P R Harrison

Nuclear run-on experiments have shown that the high level of expression of the mouse cytosolic glutathione peroxidase mRNA in erythroid cells is due to up-regulation of the gene at the transcriptional level. Studies of the chromatin structure around the cytosolic glutathione peroxidase gene have revealed a series of DNase I hypersensitive sites (DHSS) in the 3' flanking region of the gene in erythroid and other high-expression tissues that are lacking in low-expression cells, in addition to a DHSS over the promoter region in both high- and low-expression tissues. Functional transfection experiments have demonstrated that one of the 3' DHSS regions functions as an enhancer in erythroid cells but not in a low-expression epithelial cell line; and site-directed mutagenesis and footprinting experiments reveal that the activity of the erythroid cell-specific enhancer requires a cluster of binding sites for the CACC/GT box factors and the GATA and Ets families of transcription factors.


1993 ◽  
Vol 13 (10) ◽  
pp. 6290-6303
Author(s):  
J O'Prey ◽  
S Ramsay ◽  
I Chambers ◽  
P R Harrison

Nuclear run-on experiments have shown that the high level of expression of the mouse cytosolic glutathione peroxidase mRNA in erythroid cells is due to up-regulation of the gene at the transcriptional level. Studies of the chromatin structure around the cytosolic glutathione peroxidase gene have revealed a series of DNase I hypersensitive sites (DHSS) in the 3' flanking region of the gene in erythroid and other high-expression tissues that are lacking in low-expression cells, in addition to a DHSS over the promoter region in both high- and low-expression tissues. Functional transfection experiments have demonstrated that one of the 3' DHSS regions functions as an enhancer in erythroid cells but not in a low-expression epithelial cell line; and site-directed mutagenesis and footprinting experiments reveal that the activity of the erythroid cell-specific enhancer requires a cluster of binding sites for the CACC/GT box factors and the GATA and Ets families of transcription factors.


1997 ◽  
Vol 17 (9) ◽  
pp. 4885-4894 ◽  
Author(s):  
A Umezawa ◽  
H Yamamoto ◽  
K Rhodes ◽  
M J Klemsz ◽  
R A Maki ◽  
...  

The activities of ETS transcription factors are modulated by posttranscriptional modifications and cooperation with other proteins. Another factor which could alter the regulation of genes by ETS transcription factors is DNA methylation of their cognate binding sites. The optimal activity of the keratin 18 (K18) gene is dependent upon an ETS binding site within an enhancer region located in the first intron. The methylation of the ETS binding site was correlated with the repression of the K18 gene in normal human tissues and in K18 transgenic mouse tissues. Neither recombinant ETS2 nor endogenous spleen ETS binding activities bound the methylated site effectively. Increased expression of the K18 gene in spleens of transgenic mice by use of an alternative, cryptic promoter 700 bp upstream of the enhancer resulted in modestly decreased methylation of the K18 ETS site and increased RNA expression. Expression in transgenic mice of a mutant K18 gene, which was still capable of activation by ETS factors but was no longer a substrate for DNA methylation of the ETS site, was fivefold higher in spleen and heart. However, expression in other organs such as liver and intestine was similar to that of the wild-type gene. This result suggests that DNA methylation of the K18 ETS site may be functionally important in the tissue-specific repression of the K18 gene. Epigenetic modification of the binding sites for some ETS transcription factors may result in a refractory transcriptional response even in the presence of necessary trans-acting activities.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1600-1600
Author(s):  
Clifford M. Takemoto ◽  
Amir H. Shahlaee ◽  
Ying Ye ◽  
Karen I. Zeller ◽  
Daniela Zablocki ◽  
...  

Abstract Current models of hematopoiesis suggest that in early, pluripotent progenitor cells, lineage-specific transcription factors are expressed at low levels. During differentiation, subsets of these transcription factors become dominantly expressed in a lineage-restricted fashion. Understanding how transcription factors are expressed in distinct cell-types is central to defining the regulatory events that occur during lineage selection. GATA-1 is an essential transcriptional regulator for the erythroid and megakaryocyte lineages, while it is absent in neutrophils and monocytes. PU.1, on the other hand, is a critical transcription factor for neutrophils and monocytes, but it is not abundantly expressed in erythroid cells. Although these two factors have been shown to be antagonistic in monocytic and erythroid cells, both GATA-1 and PU.1 are required for the normal development of the mast lineage (Migliaccio et al., 2003, Walsh et al., 2002). Here we show that mast cells express a unique mRNA isoform of GATA-1 that is distinct from the major erythroid/megakaryocyte isoform. It is related, but not identical to the Ib transcript that has been described as a minor expressed form in erythroid cells (Tsai et al., 1991) and as a major expressed form in RNA isolated from CFU-GM primary myeloid cultures (Seshasayee et al., 2000). This GATA-1 mast cell isoform (GATA-1mast) differs from the erythroid/megakaryocyte isoform by a unique, untranslated first exon that is alternatively spliced onto the downstream coding exons. In mast cells, GATA-1mast is expressed from a promoter separate from that utilized in megakaryocytic and erythroid cells. Comparative analysis of genomic sequence of the GATA-1 locus in this region reveals modules of extensive phylogenetic conservation in mammals, including stretches containing both highly conserved PU.1 and GATA binding sites. We have performed chromatin immunoprecipitation studies with GATA-1 antibodies and have defined multiple regions of in vivo binding within the GATA-1 locus in erythroid cells. Addtional studies are underway utilizing the Scanning ChIP procedure (Zeller et al., 2001) to determine in vivo GATA-1, GATA-2, and PU.1 binding sites of these factors to the GATA-1 locus in mast cells. In order to determine whether PU.1 positively regulates the expression of the mast cell GATA-1 isoform, we have examined GATA-1mast expression in PU.1 −/ − cells. PU.1 −/ − fetal liver cells cannot differentiate into mast cells in vitro; reintroduction of PU.1 expression restores mast cell differentiation. We show that PU.1 −/ − cells are deficient in expression of the GATA-1 mast cell mRNA isoform, and reintroduction of PU.1 into the PU.1 deficient cells markedly up-regulates the expression of GATA-1mast. Our findings demonstrate that PU.1 positively regulates a distinct GATA-1 isoform during mast cell differentiation. We propose a model in which GATA factors cooperate with PU.1 to direct cell-specific isoforms of transcriptional regulators during hematopoietic development.


1991 ◽  
Vol 11 (2) ◽  
pp. 843-853
Author(s):  
T Evans ◽  
G Felsenfeld

We show that expression in fibroblasts of a single cDNA, encoding the erythroid DNA-binding protein Eryf1 (GF-1, NF-E1), very efficiently activates transcription of a chicken alpha-globin promoter, trans-Activation in these cells occurred when Eryf1 bound to a single site within a minimal globin promoter. In contrast, efficient activation in erythroid cells required multiple Eryf1 binding sites. Our results indicate that mechanisms exist that are capable of modulating the trans-acting capabilities of Eryf1 in a cell-specific manner, without affecting DNA binding. The response of the minimal globin promoter to Eryf1 in fibroblasts was at least as great as for optimal constructions in erythroid cells. Therefore, the assay provides a very simple and sensitive system with which to study gene activation by a tissue-specific factor.


Sign in / Sign up

Export Citation Format

Share Document