scholarly journals A CTCF-Dependent Silencer Located in the Differentially Methylated Area May Regulate Expression of a Housekeeping Gene Overlapping a Tissue-Specific Gene Domain

2006 ◽  
Vol 26 (5) ◽  
pp. 1589-1597 ◽  
Author(s):  
Denis Klochkov ◽  
Héctor Rincón-Arano ◽  
Elena S. Ioudinkova ◽  
Viviana Valadez-Graham ◽  
Alexey Gavrilov ◽  
...  

ABSTRACT The tissue-specific chicken α-globin gene domain represents one of the paradigms, in terms of its constitutively open chromatin conformation and the location of several regulatory elements within the neighboring housekeeping gene. Here, we show that an 0.2-kb DNA fragment located ∼4 kb upstream to the chicken α-globin gene cluster contains a binding site for the multifunctional protein factor CTCF and possesses silencer activity which depends on CTCF binding, as demonstrated by site-directed mutagenesis of the CTCF recognition sequence. CTCF was found to be associated with this recognition site in erythroid cells but not in lymphoid cells where the site is methylated. A functional promoter directing the transcription of the apparently housekeeping ggPRX gene was found 120 bp from the CTCF-dependent silencer. The data are discussed in terms of the hypothesis that the CTCF-dependent silencer stabilizes the level of ggPRX gene transcription in erythroid cells where the promoter of this gene may be influenced by positive cis-regulatory signals activating α-globin gene transcription.

2017 ◽  
Author(s):  
Carl Baribault ◽  
Kenneth C. Ehrlich ◽  
V. K. Chaithanya Ponnaluri ◽  
Sriharsa Pradhan ◽  
Michelle Lacey ◽  
...  

AbstractTissue-specific gene transcription can be affected by DNA methylation in ways that are difficult to discern from studies focused on genome-wide analyses of differentially methylated regions (DMRs). We studied 95 genes in detail using available epigenetic and transcription databases to detect and elucidate less obvious associations between development-linked hypermethylated DMRs in myoblasts (Mb) and cell-and tissue-specific expression. Many of these genes encode developmental transcription factors and display DNA hypermethylation also in skeletal muscle (SkM) and a few heterologous samples (e.g., aorta, mammary epithelial cells, or brain) among the 38 types of human cell cultures or tissues examined. Most of the DMRs overlapped transcription regulatory elements, including canonical, alternative, or cryptic promoters; enhancers; CTCF binding sites; and long-noncoding RNA (lncRNA) gene regions. Among the prominent relationships between DMRs and expression was promoter-region hypermethylation accompanying repression in Mb but not in many other repressed samples (26 genes). Another surprising relationship was down-modulated (but not silenced) expression in Mb associated with DNA hypermethylation at cryptic enhancers in Mb although such methylation was absent in both non-expressing samples and highly expressing samples (24 genes). The tissue-specificity of DNA hypermethylation can be explained for many of the genes by their roles in prenatal development or by the tissue-specific expression of neighboring genes. Besides elucidating developmental epigenetics, our study provides insights into the roles of abnormal DNA methylation in disease, e.g., cancer, Duchenne muscular dystrophy, and congenital heart malformations.


2013 ◽  
Vol 27 (12) ◽  
pp. 2080-2092 ◽  
Author(s):  
Mahalakshmi Santhanam ◽  
Dennis J. Chia

The diverse roles of IGF-1 in physiology include acting as the endocrine intermediate to elicit the anabolic actions of GH. The majority of serum IGF-1 is synthesized in liver, where GH stimulates Igf1 gene transcription via the transcription factor, signal transducer and activator of transcription (Stat)5b. We and others have identified multiple Stat5-binding domains at the Igf1 locus that function in gene regulation, but it remains unclear whether the roles of these domains are tissue specific. Survey of the chromatin landscape of regulatory domains can provide insight about mechanisms of gene regulation, with chromatin accessibility regarded as a hallmark feature of regulatory domains. We prepared chromatin from liver, kidney, and spleen of C57BL/6 mice, and used formaldehyde-associated isolation of regulatory elements to assess chromatin accessibility at the major Igf1 promoter and 7 -binding enhancers. Whereas the promoters of other prototypical tissue-specific genes are open in a tissue-specific way, the major Igf1 promoter is open in all 3 tissues, albeit moderately more so in liver. In contrast, chromatin accessibility at Igf1 Stat5-binding domains is essentially restricted to liver, indicating that the enhancers are driving extensive differences in tissue expression. Furthermore, studies with Ghrhrlit/lit mice reveal that prior GH exposure is not necessary to establish open chromatin at these domains. Lastly, formaldehyde-associated isolation of regulatory elements of human liver samples confirms open chromatin at IGF1 Promoter 1, but unexpectedly, homologous Stat5-binding motifs are not accessible. We conclude that robust GH-stimulated hepatic Igf1 gene transcription utilizes tissue-specific mechanisms of epigenetic regulation that are established independent of GH signaling.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2094-2094
Author(s):  
Aurelie Desgardin ◽  
Tatiana Abramova ◽  
Jenny Lin ◽  
Eun-Hee Shim ◽  
John M Cunningham

Abstract Abstract 2094 Krüppel-like factor 1 (KLF1) is a zinc finger-encoding transcription factor that recognizes CACC elements, and is essential for maximal erythroid-specific gene transcription. Several critical mechanisms dependent on KLF1 and required for gene activation have been elucidated, predominantly using the beta-globin locus. KLF1 has been associated with the ordered recruitment of SWI/SNF and RNA polymerase-II complexes, necessary for chromatin remodeling and gene transcription respectively. KLF1 has also been reported to influence erythroid-specific heme biosynthesis. Studies in KLF1-null fetal erythroblasts and a KLF-1 deficient cell line have demonstrated that mRNA levels of the first three enzymes of the biosynthetic pathway are underrepresented. However, although in vitro studies of the rate-limiting enzymes ALAS2 and PBGD suggested a potential regulatory role for KLF1, in vivo studies failed to validate these findings. ALAD is the second enzyme of the pathway. Complete loss of ALAD expression in erythroid cells results in catastrophic events during zebrafish ontogeny. Interestingly, no human erythropoietic defect has been reported as a consequence of aberrant ALAD expression. To extend the analysis of KLF1's regulation of heme biosynthesis, we evaluated KLF1 binding of enzyme regulatory sequences by EMSA and ChIP studies, identifying a KLF1 binding CACC element in the erythroid-specific ALAD promoter. This regulatory element was transactivated specifically by a KLF1 transgene in KLF1-deficient cells. Using a unique 4-OH-Tamoxifen (4-OHT) mediated KLF1-inducible erythroid cell line (K1-ERp), we identified KLF1 as an essential, and early (within 2 hours of induction) activator of transcription of the endogenous ALAD, but not ALAS2 or PBGD genes. Further studies in K1-ERp cells, including DNAseI hypersensitivity and ChIP assays revealed that KLF1 occupancy at the erythroid-specific ALAD promoter triggers a series of molecular events including histone modifications, and enhanced recruitment of the sequence-specific transcription factors, GATA-1, NF-E2 and the TAL-1/SCL multiprotein complex. Importantly, we identified differences in the kinetics of recruitment of the closely related histone acetyltransferases proteins CBP and p300 and the SWI/SNF ATPase Brg1. The latter complex was recruited subsequent to KLF1 binding, although the ALAD promoter was already DNAseI hypersensitive. These results suggest strongly that KLF1 plays a major role in the regulation of heme biosynthesis in erythroid cells. Furthermore, our data challenges a model in which an identical temporal cascade of molecular events are required for transcription at KLF1-dependent promoters. Disclosures: No relevant conflicts of interest to declare.


1996 ◽  
Vol 16 (4) ◽  
pp. 1695-1705 ◽  
Author(s):  
M Crossley ◽  
E Whitelaw ◽  
A Perkins ◽  
G Williams ◽  
Y Fujiwara ◽  
...  

CACCC boxes are among the critical sequences present in regulatory elements of genes expressed in erythroid cells, as well as in selected other cell types. While an erythroid cell-specific CACCC-box-binding protein, EKLF, has been shown to be required in vivo for proper expression of the adult beta-globin gene, it is dispensable for the regulation of several other globin and nonglobin erythroid cell-expressed genes. In the work described here, we searched for additional CACCC-box transcription factors that might be active in murine erythroid cells. We identified a major gel shift activity (termed BKLF), present in yolk sac and fetal liver erythroid cells, that could be distinguished from EKLF by specific antisera. Through relaxed-stringency hybridization, we obtained the cDNA encoding BKLF, a highly basic, novel zinc finger protein that is related to EKLF and other Krüppel-like members in its DNA-binding domain but unrelated elsewhere. BKLF, which is widely but not ubiquitously expressed in cell lines, is highly expressed in the midbrain region of embryonic mice and appears to correspond to the gel shift activity TEF-2, a transcriptional activator implicated in regulation of the simian virus 40 enhancer and other CACCC-box-containing regulatory elements. Because BKLF binds with high affinity and preferentially over Sp1 to many CACCC sequences of erythroid cell expressed genes, it is likely to participate in the control of many genes whose expression appears independent of the action of EKLF.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Rongxin Fang ◽  
Sebastian Preissl ◽  
Yang Li ◽  
Xiaomeng Hou ◽  
Jacinta Lucero ◽  
...  

AbstractIdentification of the cis-regulatory elements controlling cell-type specific gene expression patterns is essential for understanding the origin of cellular diversity. Conventional assays to map regulatory elements via open chromatin analysis of primary tissues is hindered by sample heterogeneity. Single cell analysis of accessible chromatin (scATAC-seq) can overcome this limitation. However, the high-level noise of each single cell profile and the large volume of data pose unique computational challenges. Here, we introduce SnapATAC, a software package for analyzing scATAC-seq datasets. SnapATAC dissects cellular heterogeneity in an unbiased manner and map the trajectories of cellular states. Using the Nyström method, SnapATAC can process data from up to a million cells. Furthermore, SnapATAC incorporates existing tools into a comprehensive package for analyzing single cell ATAC-seq dataset. As demonstration of its utility, SnapATAC is applied to 55,592 single-nucleus ATAC-seq profiles from the mouse secondary motor cortex. The analysis reveals ~370,000 candidate regulatory elements in 31 distinct cell populations in this brain region and inferred candidate cell-type specific transcriptional regulators.


1987 ◽  
Vol 7 (11) ◽  
pp. 4024-4029
Author(s):  
M Trudel ◽  
J Magram ◽  
L Bruckner ◽  
F Costantini

The human G gamma-globin and beta-globin genes are expressed in erythroid cells at different stages of human development, and previous studies have shown that the two cloned genes are also expressed in a differential stage-specific manner in transgenic mice. The G gamma-globin gene is expressed only in murine embryonic erythroid cells, while the beta-globin gene is active only at the fetal and adult stages. In this study, we analyzed transgenic mice carrying a series of hybrid genes in which different upstream, intragenic, or downstream sequences were contributed by the beta-globin or G gamma-globin gene. We found that hybrid 5'G gamma/3'beta globin genes containing G gamma-globin sequences upstream from the initiation codon were expressed in embryonic erythroid cells at levels similar to those of an intact G gamma-globin transgene. In contrast, beta-globin upstream sequences were insufficient for expression of 5'beta/3'G gamma hybrid globin genes or a beta-globin-metallothionein fusion gene in adult erythroid cells. However, beta-globin downstream sequences, including 212 base pairs of exon III and 1,900 base pairs of 3'-flanking DNA, were able to activate a 5'G gamma/3'beta hybrid globin gene in fetal and adult erythroid cells. These experiments suggest that positive regulatory elements upstream from the G gamma-globin and downstream from the beta-globin gene are involved in the differential expression of the two genes during development.


Blood ◽  
1993 ◽  
Vol 81 (5) ◽  
pp. 1384-1392 ◽  
Author(s):  
I Plavec ◽  
T Papayannopoulou ◽  
C Maury ◽  
F Meyer

Abstract Retroviral-mediated gene transfer of human beta-globin provides a model system for the development of somatic gene therapy for hemoglobinopathies. Previous work has shown that mice receiving a transplant of bone marrow cells infected with a retroviral vector containing the human beta-globin gene can express human beta-globin specifically in erythroid cells; however, the level of expression of the transduced globin gene was low (1% to 2% per gene copy as compared with that of the endogenous mouse beta-globin gene). We report here the construction of a recombinant retrovirus vector encoding a human beta- globin gene fused to the 4 major regulatory elements of the human beta- globin locus control region (LCR). The LCR cassette increases the level of expression of the globin gene in murine erythroleukemia cells by 10- fold. To study the level of expression in vivo, mouse bone marrow cells were infected with virus-producing cells and the transduced cells were injected into lethally irradiated recipients. In the majority of provirus-containing mice (up to 75%), expression of human beta-globin in peripheral blood was detected at least 3 to 6 months after transplantation. Twelve animals representative of the level of expression of the transduced gene in blood (0.04% to 3.2% of the endogenous mouse beta-globin RNA) were selected for further analysis. A range of 0.4% to 12% of circulating erythrocytes stained positive for human beta-globin protein. Based on these values, the level of expression of the transduced gene per cell was estimated to be 10% to 39% of the endogenous mouse beta-globin gene. These data demonstrate that fusion of the LCR to the beta-globin gene in a retroviral vector increases the level of beta-globin expression in murine erythroleukemia cells and suggest that high-level expression can be obtained in erythroid cells in vivo after transduction into hematopoietic stem cells.


Sign in / Sign up

Export Citation Format

Share Document