scholarly journals Tissue-Specific Regulation of Iron Metabolism and Heme Synthesis: Distinct Control Mechanisms in Erythroid Cells

Blood ◽  
1997 ◽  
Vol 89 (1) ◽  
pp. 1-25 ◽  
Author(s):  
Prem Ponka
Blood ◽  
1998 ◽  
Vol 91 (2) ◽  
pp. 695-705 ◽  
Author(s):  
Lingyun Zhu ◽  
Samir B. Kahwash ◽  
Long-Sheng Chang

Abstract Erythrocyte protein 4.2 (P4.2) is an important component of the erythrocyte membrane skeletal network with an undefined biologic function. Presently, very little is known about the expression of the P4.2 gene during mouse embryonic development and in adult animals. By using the Northern blot and in situ hybridization techniques, we have examined the spatial and temporal expression of the P4.2 gene during mouse development. We show that expression of the mouse P4.2 gene is temporally regulated during embryogenesis and that the P4.2 mRNA expression pattern coincides with the timing of erythropoietic activity in hematopoietic organs. P4.2 transcripts are first detected in embryos on day 7.5 of gestation and are localized exclusively in primitive erythroid cells of yolk sac origin. These erythroid cells remain to be the only source for P4.2 expression until the switch of the hematopoietic producing site to fetal liver. In mid- and late-gestation periods, P4.2 mRNA expression is restricted to the erythroid cells in fetal liver and to circulating erythrocytes. Around and after birth, the site for P4.2 expression is switched from liver to spleen and bone marrow, and P4.2 transcripts are only detected in cells of the erythroid lineage. These results provide the evidence for specific P4.2 expression in erythroid cells. In addition, the timing and pattern of expression of the P4.2 gene suggest the specific regulation of the P4.2 gene.


2017 ◽  
Vol 1 (11) ◽  
pp. 685-692 ◽  
Author(s):  
Laura J. Norton ◽  
Alister P. W. Funnell ◽  
Jon Burdach ◽  
Beeke Wienert ◽  
Ryo Kurita ◽  
...  

Key Points KLF1 directly drives expression of ZBTB7A, a key repressor of fetal γ-globin gene expression, in erythroid cells. An erythroid-specific regulation mechanism allows upregulation of a novel ZBTB7A transcript in erythroid cells.


Blood ◽  
1985 ◽  
Vol 65 (4) ◽  
pp. 850-857 ◽  
Author(s):  
P Ponka ◽  
HM Schulman

Abstract The inhibition of delta-aminolevulinic acid (ALA) synthase activity by heme is commonly thought to regulate the overall rate of heme synthesis in erythroid cells. However, since heme inhibits erythroid cell uptake of iron from transferrin, we have tested the hypothesis that in reticulocytes heme regulates its own synthesis by controlling the cellular acquisition of iron from transferrin rather than by controlling the synthesis of ALA. We found that hemin added to reticulocytes in vitro inhibits not only the total cell incorporation of 59Fe from transferrin but also the incorporation of [2–14C]-glycine and transferrin-bound 59Fe into heme. However, hemin did not inhibit [2 –14C]-glycine incorporation into protoporphyrin. Furthermore, cycloheximide, which increases the level of non-hemoglobin heme in reticulocytes, also inhibited [2–14C]-glycine into heme but not into protoporphyrin. With high concentrations of ferric pyridoxal benzoylhydrazone (Fe-PBH), which, independent of transferrin and transferrin receptors, can be used as a source of iron for heme synthesis in reticulocytes, significantly more iron is incorporated into heme than from saturating concentrations of Fe-transferrin. This suggests that some step (or steps) in the pathway of iron from extracellular transferrin to protoporphyrin limits the overall rate of heme synthesis in reticulocytes. In addition, hemin in concentrations that inhibit the utilization of transferrin-bound iron for heme synthesis has no effect on the incorporation of iron from Fe-PBH into heme. Our results indicate that in reticulocytes heme inhibits and controls the utilization of iron from transferrin but has no effect on the enzymes of porphyrin biosynthesis and ferrochelatase. This mode of regulation of heme synthesis may be a specific characteristic of the hemoglobin biosynthetic pathway.


Blood ◽  
1985 ◽  
Vol 65 (4) ◽  
pp. 850-857 ◽  
Author(s):  
P Ponka ◽  
HM Schulman

The inhibition of delta-aminolevulinic acid (ALA) synthase activity by heme is commonly thought to regulate the overall rate of heme synthesis in erythroid cells. However, since heme inhibits erythroid cell uptake of iron from transferrin, we have tested the hypothesis that in reticulocytes heme regulates its own synthesis by controlling the cellular acquisition of iron from transferrin rather than by controlling the synthesis of ALA. We found that hemin added to reticulocytes in vitro inhibits not only the total cell incorporation of 59Fe from transferrin but also the incorporation of [2–14C]-glycine and transferrin-bound 59Fe into heme. However, hemin did not inhibit [2 –14C]-glycine incorporation into protoporphyrin. Furthermore, cycloheximide, which increases the level of non-hemoglobin heme in reticulocytes, also inhibited [2–14C]-glycine into heme but not into protoporphyrin. With high concentrations of ferric pyridoxal benzoylhydrazone (Fe-PBH), which, independent of transferrin and transferrin receptors, can be used as a source of iron for heme synthesis in reticulocytes, significantly more iron is incorporated into heme than from saturating concentrations of Fe-transferrin. This suggests that some step (or steps) in the pathway of iron from extracellular transferrin to protoporphyrin limits the overall rate of heme synthesis in reticulocytes. In addition, hemin in concentrations that inhibit the utilization of transferrin-bound iron for heme synthesis has no effect on the incorporation of iron from Fe-PBH into heme. Our results indicate that in reticulocytes heme inhibits and controls the utilization of iron from transferrin but has no effect on the enzymes of porphyrin biosynthesis and ferrochelatase. This mode of regulation of heme synthesis may be a specific characteristic of the hemoglobin biosynthetic pathway.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 849-849
Author(s):  
Yvette Y Yien ◽  
Jiahai Shi ◽  
Caiyong Chen ◽  
Jesmine Cheung ◽  
Anthony Grillo ◽  
...  

Abstract Erythropoietin (EPO) signaling is critical to many processes essential to terminal erythropoiesis. Despite the centrality of iron metabolism to erythropoiesis, the mechanisms by which EPO regulates iron status are not well understood. To better understand these regulatory mechanisms, we profiled gene expression in EPO-treated fetal liver cells to identify novel iron regulatory genes (Figure A). We determined that FAM210B, a mitochondrial inner membrane protein, was essential for hemoglobinization, proliferation, and enucleation during terminal erythroid maturation (Figure B). Fam210b deficiency led to defects in mitochondrial iron uptake, heme synthesis, and iron-sulfur cluster formation (Figure C). These defects were corrected with a lipid-soluble small molecule iron transporter in Fam210b-deficient murine erythroid cells and zebrafish morphants. Genetic complementation experiments revealed that FAM210B is not a mitochondrial iron transporter, but is required for optimal mitochondrial iron import during erythroid differentiation (Figure D). FAM210B is also required for optimal FECH activity in differentiating erythroid cells. As FAM210B interacts with the terminal enzymes of the heme synthesis pathway, we propose that FAM210B functions as an adaptor protein to facilitate the formation of an oligomeric mitochondrial iron transport complex, which is required for the increase in iron acquisition for heme synthesis during terminal erythropoiesis (Figure E). Collectively, our data reveal a novel mechanism by which EPO signaling regulates terminal erythropoiesis and iron metabolism. Figure. Figure. Disclosures Palis: Rubies Therapeutics: Consultancy.


Sign in / Sign up

Export Citation Format

Share Document