scholarly journals Computational analysis of candidate intron regulatory elements for tissue-specific alternative pre-mRNA splicing

2001 ◽  
Vol 29 (11) ◽  
pp. 2338-2348 ◽  
Author(s):  
M. Brudno
2007 ◽  
Vol 35 (14) ◽  
pp. 4845-4857 ◽  
Author(s):  
Debopriya Das ◽  
Tyson A. Clark ◽  
Anthony Schweitzer ◽  
Miki Yamamoto ◽  
Henry Marr ◽  
...  

1993 ◽  
Vol 13 (8) ◽  
pp. 4549-4555
Author(s):  
J Shen ◽  
C J Beall ◽  
J Hirsh

The Drosophila dopa decarboxylase gene, Ddc, is expressed in the hypoderm and in a small number of cells in the central nervous system (CNS). The unique Ddc primary transcript is alternatively spliced in these two tissues. We investigated whether Ddc splicing in the CNS is a general property of the CNS or a unique property of the cells that normally express Ddc by expressing the Ddc primary transcript ubiquitously under the control of an Hsp70 heat shock promoter. Under basal expression conditions, Ddc splicing shows normal tissue specificity, indicating that the regulation of Ddc splicing in the CNS is tissue specific rather than cell specific. Previous studies have shown that severe heat shock blocks mRNA splicing in cultured Drosophila melanogaster cells. Our results show that splicing of the heat shock-inducible Hsp83 transcript is very resistant to heat shock. In contrast, under either mild or severe heat shock, the splicing specificity of the heat shock-induced Ddc primary transcript is affected, leading to the accumulation of inappropriately high levels of the CNS splice form in non-CNS tissues. The chromosomal Ddc transcript is similarly affected. These results show unexpected heterogeneity in the splicing of individual mRNAs as a response to heat shock and suggest that the Ddc CNS-specific splicing pathway is the default.


1993 ◽  
Vol 13 (8) ◽  
pp. 4549-4555 ◽  
Author(s):  
J Shen ◽  
C J Beall ◽  
J Hirsh

The Drosophila dopa decarboxylase gene, Ddc, is expressed in the hypoderm and in a small number of cells in the central nervous system (CNS). The unique Ddc primary transcript is alternatively spliced in these two tissues. We investigated whether Ddc splicing in the CNS is a general property of the CNS or a unique property of the cells that normally express Ddc by expressing the Ddc primary transcript ubiquitously under the control of an Hsp70 heat shock promoter. Under basal expression conditions, Ddc splicing shows normal tissue specificity, indicating that the regulation of Ddc splicing in the CNS is tissue specific rather than cell specific. Previous studies have shown that severe heat shock blocks mRNA splicing in cultured Drosophila melanogaster cells. Our results show that splicing of the heat shock-inducible Hsp83 transcript is very resistant to heat shock. In contrast, under either mild or severe heat shock, the splicing specificity of the heat shock-induced Ddc primary transcript is affected, leading to the accumulation of inappropriately high levels of the CNS splice form in non-CNS tissues. The chromosomal Ddc transcript is similarly affected. These results show unexpected heterogeneity in the splicing of individual mRNAs as a response to heat shock and suggest that the Ddc CNS-specific splicing pathway is the default.


2008 ◽  
Vol 82 (8) ◽  
pp. 3921-3931 ◽  
Author(s):  
C. M. Exline ◽  
Z. Feng ◽  
C. M. Stoltzfus

ABSTRACT Over 40 different human immunodeficiency virus type 1 (HIV-1) mRNAs are produced by alternative splicing of the primary HIV-1 RNA transcripts. In addition, approximately half of the viral RNA remains unspliced and is used as genomic RNA and as mRNA for the Gag and Pol gene products. Regulation of splicing at the HIV-1 3′ splice sites (3′ss) requires suboptimal polypyrimidine tracts, and positive or negative regulation occurs through the binding of cellular factors to cis-acting splicing regulatory elements. We have previously shown that splicing at HIV-1 3′ss A1, which produces single-spliced vif mRNA and promotes the inclusion of HIV exon 2 into both completely and incompletely spliced viral mRNAs, is increased by optimizing the 5′ splice site (5′ss) downstream of exon 2 (5′ss D2). Here we show that the mutations within 5′ss D2 that are predicted to lower or increase the affinity of the 5′ss for U1 snRNP result in reduced or increased Vif expression, respectively. Splicing at 5′ss D2 was not necessary for the effect of 5′ss D2 on Vif expression. In addition, we have found that mutations of the GGGG motif proximal to the 5′ss D2 increase exon 2 inclusion and Vif expression. Finally, we report the presence of a novel exonic splicing enhancer (ESE) element within the 5′-proximal region of exon 2 that facilitates both exon inclusion and Vif expression. This ESE binds specifically to the cellular SR protein SRp75. Our results suggest that the 5′ss D2, the proximal GGGG silencer, and the ESE act competitively to determine the level of vif mRNA splicing and Vif expression. We propose that these positive and negative splicing elements act together to allow the accumulation of vif mRNA and unspliced HIV-1 mRNA, compatible with optimal virus replication.


Sign in / Sign up

Export Citation Format

Share Document