scholarly journals PA-GOSUB: a searchable database of model organism protein sequences with their predicted Gene Ontology molecular function and subcellular localization

2004 ◽  
Vol 33 (Database issue) ◽  
pp. D147-D153 ◽  
Author(s):  
P. Lu
2019 ◽  
Vol 48 (D1) ◽  
pp. D650-D658 ◽  
Author(s):  
◽  
Julie Agapite ◽  
Laurent-Philippe Albou ◽  
Suzi Aleksander ◽  
Joanna Argasinska ◽  
...  

Abstract The Alliance of Genome Resources (Alliance) is a consortium of the major model organism databases and the Gene Ontology that is guided by the vision of facilitating exploration of related genes in human and well-studied model organisms by providing a highly integrated and comprehensive platform that enables researchers to leverage the extensive body of genetic and genomic studies in these organisms. Initiated in 2016, the Alliance is building a central portal (www.alliancegenome.org) for access to data for the primary model organisms along with gene ontology data and human data. All data types represented in the Alliance portal (e.g. genomic data and phenotype descriptions) have common data models and workflows for curation. All data are open and freely available via a variety of mechanisms. Long-term plans for the Alliance project include a focus on coverage of additional model organisms including those without dedicated curation communities, and the inclusion of new data types with a particular focus on providing data and tools for the non-model-organism researcher that support enhanced discovery about human health and disease. Here we review current progress and present immediate plans for this new bioinformatics resource.


2016 ◽  
Vol 13 (1) ◽  
pp. 23-33 ◽  
Author(s):  
Julia Rahman ◽  
Nazrul Islam Mondal ◽  
Khaled Ben Islam ◽  
Al Mehedi Hasan

Summary For the importance of protein subcellular localization in different branch of life science and drug discovery, researchers have focused their attentions on protein subcellular localization prediction. Effective representation of features from protein sequences plays most vital role in protein subcellular localization prediction specially in case of machine learning technique. Single feature representation like pseudo amino acid composition (PseAAC), physiochemical property model (PPM), amino acid index distribution (AAID) contains insufficient information from protein sequences. To deal with such problem, we have proposed two feature fusion representations AAIDPAAC and PPMPAAC to work with Support Vector Machine classifier, which fused PseAAC with PPM and AAID accordingly. We have evaluated performance for both single and fused feature representation of Gram-negative bacterial dataset. We have got at least 3% more actual accuracy by AAIDPAAC and 2% more locative accuracy by PPMPAAC than single feature representation.


Sign in / Sign up

Export Citation Format

Share Document