scholarly journals Insect small nuclear RNA gene promoters evolve rapidly yet retain conserved features involved in determining promoter activity and RNA polymerase specificity

2006 ◽  
Vol 35 (1) ◽  
pp. 21-34 ◽  
Author(s):  
Genaro Hernandez ◽  
Faramarz Valafar ◽  
William E. Stumph
1994 ◽  
Vol 14 (9) ◽  
pp. 5910-5919
Author(s):  
S Connelly ◽  
C Marshallsay ◽  
D Leader ◽  
J W Brown ◽  
W Filipowicz

RNA polymerase (Pol) II- and RNA Pol III-transcribed small nuclear RNA (snRNA) genes of dicotyledonous plants contain two essential upstream promoter elements, the USE and TATA. The USE is a highly conserved plant snRNA gene-specific element, and its distance from the -30 TATA box, corresponding to approximately three and four helical DNA turns in Pol III and Pol II genes, respectively, is crucial for determining RNA Pol specificity of transcription. Sequences upstream of the USE play no role in snRNA gene transcription in dicot plants. Here we show that for expression of snRNA genes in maize, a monocotyledonous plant, the USE and TATA elements are essential, but not sufficient, for transcription. Efficient expression of both Pol II- and Pol III-specific snRNA genes in transfected maize protoplasts requires an additional element(s) positioned upstream of the USE. This element, named MSP (for monocot-specific promoter; consensus, RGCCCR), is present in one to three copies in monocot snRNA genes and is interchangeable between Pol II- and Pol III-specific genes. The efficiency of snRNA gene expression in maize protoplast is determined primarily by the strength of the MSP element(s); this contrasts with the situation in protoplasts of a dicot plant, Nicotiana plumbaginifolia, where promoter strength is a function of the quality of the USE element. Interestingly, the organization of monocot Pol III-specific snRNA gene promoters closely resembles those of equivalent vertebrate promoters. The data are discussed in the context of the coevolution of Pol II- and Pol III-specific snRNA gene promoters within many eukaryotic organisms.


1994 ◽  
Vol 14 (9) ◽  
pp. 5910-5919 ◽  
Author(s):  
S Connelly ◽  
C Marshallsay ◽  
D Leader ◽  
J W Brown ◽  
W Filipowicz

RNA polymerase (Pol) II- and RNA Pol III-transcribed small nuclear RNA (snRNA) genes of dicotyledonous plants contain two essential upstream promoter elements, the USE and TATA. The USE is a highly conserved plant snRNA gene-specific element, and its distance from the -30 TATA box, corresponding to approximately three and four helical DNA turns in Pol III and Pol II genes, respectively, is crucial for determining RNA Pol specificity of transcription. Sequences upstream of the USE play no role in snRNA gene transcription in dicot plants. Here we show that for expression of snRNA genes in maize, a monocotyledonous plant, the USE and TATA elements are essential, but not sufficient, for transcription. Efficient expression of both Pol II- and Pol III-specific snRNA genes in transfected maize protoplasts requires an additional element(s) positioned upstream of the USE. This element, named MSP (for monocot-specific promoter; consensus, RGCCCR), is present in one to three copies in monocot snRNA genes and is interchangeable between Pol II- and Pol III-specific genes. The efficiency of snRNA gene expression in maize protoplast is determined primarily by the strength of the MSP element(s); this contrasts with the situation in protoplasts of a dicot plant, Nicotiana plumbaginifolia, where promoter strength is a function of the quality of the USE element. Interestingly, the organization of monocot Pol III-specific snRNA gene promoters closely resembles those of equivalent vertebrate promoters. The data are discussed in the context of the coevolution of Pol II- and Pol III-specific snRNA gene promoters within many eukaryotic organisms.


1987 ◽  
Vol 262 (1) ◽  
pp. 75-81
Author(s):  
R Reddy ◽  
D Henning ◽  
G Das ◽  
M Harless ◽  
D Wright

1995 ◽  
Vol 15 (4) ◽  
pp. 2019-2027 ◽  
Author(s):  
J B Yoon ◽  
S Murphy ◽  
L Bai ◽  
Z Wang ◽  
R G Roeder

The proximal sequence element (PSE), found in both RNA polymerase II (Pol II)- and RNA Pol III-transcribed small nuclear RNA (snRNA) genes, is specifically bound by the PSE-binding transcription factor (PTF). We have purified PTF to near homogeneity from HeLa cell extracts by using a combination of conventional and affinity chromatographic methods. Purified PTF is composed of four polypeptides with apparent molecular masses of 180, 55, 45, and 44 kDa. A combination of preparative electrophoretic mobility shift and sodium dodecyl sulfate-polyacrylamide gel electrophoresis analyses has conclusively identified these four polypeptides as subunits of human PTF, while UV cross-linking experiments demonstrate that the largest subunit of PTF is in close contact with the PSE. The purified PTF activates transcription from promoters of both Pol II- and Pol III-transcribed snRNA genes in a PSE-dependent manner. In addition, we have investigated factor requirements in transcription of Pol III-dependent snRNA genes. We show that in extracts that have been depleted of TATA-binding protein (TBP) and associated factors, recombinant TBP restores transcription from U6 and 7SK promoters but not from the VAI promoter, whereas the highly purified TBP-TBP-associated factor complex TFIIIB restores transcription from the VAI but not the U6 or 7SK promoter. Furthermore, by complementation of heat-treated extracts lacking TFIIIC activity, we show that TFIIIC1 is required for transcription of both the 7SK and VAI genes, whereas TFIIIC2 is required only for transcription of the VAI gene. From these observations, we conclude (i) that PTF and TFIIIC2 function as gene-specific as gene-specific factors for PSE-and B-box-containing Pol III genes, respectively, (ii) that the form of TBP used by class III genes with upstream promoter elements differs from the from used by class III genes with internal promoters, and (iii) that TFIIIC1 is required for both internal and external Pol III promoters.


Cell ◽  
2005 ◽  
Vol 123 (2) ◽  
pp. 265-276 ◽  
Author(s):  
David Baillat ◽  
Mohamed-Ali Hakimi ◽  
Anders M. Näär ◽  
Ali Shilatifard ◽  
Neil Cooch ◽  
...  

1999 ◽  
Vol 19 (3) ◽  
pp. 2130-2141 ◽  
Author(s):  
T. C. Kuhlman ◽  
H. Cho ◽  
D. Reinberg ◽  
N. Hernandez

ABSTRACT RNA polymerase II transcribes the mRNA-encoding genes and the majority of the small nuclear RNA (snRNA) genes. The formation of a minimal functional transcription initiation complex on a TATA-box-containing mRNA promoter has been well characterized and involves the ordered assembly of a number of general transcription factors (GTFs), all of which have been either cloned or purified to near homogeneity. In the human RNA polymerase II snRNA promoters, a single element, the proximal sequence element (PSE), is sufficient to direct basal levels of transcription in vitro. The PSE is recognized by the basal transcription complex SNAPc. SNAPc, which is not required for transcription from mRNA-type RNA polymerase II promoters such as the adenovirus type 2 major late (Ad2ML) promoter, is thought to recruit TATA binding protein (TBP) and nucleate the assembly of the snRNA transcription initiation complex, but little is known about which GTFs other than TBP are required. Here we show that the GTFs IIA, IIB, IIF, and IIE are required for efficient RNA polymerase II transcription from snRNA promoters. Thus, although the factors that recognize the core elements of RNA polymerase II mRNA and snRNA-type promoters differ, they mediate the recruitment of many common GTFs.


1985 ◽  
Vol 5 (9) ◽  
pp. 2332-2340
Author(s):  
G R Kunkel ◽  
T Pederson

Transcription-proximal stages of U1 small nuclear RNA biosynthesis were studied by 32P labeling of nascent chains in isolated HeLa cell nuclei. Labeled RNA was hybridized to nitrocellulose-immobilized, single-stranded M13 DNA clones corresponding to regions within or flanking a human U1 RNA gene. Transcription of U1 RNA was inhibited by greater than 95% by alpha-amanitin at 1 microgram/ml, consistent with previous evidence that it is synthesized by RNA polymerase II. No hybridization to DNA immediately adjacent to the 5' end of mature U1 RNA (-6 to -105 nucleotides) was detected, indicating that, like all studied polymerase II initiation, transcription of U1 RNA starts at or very near the cap site. However, in contrast to previously described transcription units for mRNA, in which equimolar transcription occurs for hundreds or thousands of nucleotides beyond the mature 3' end of the mRNA, labeled U1 RNA hybridization dropped off sharply within a very short region (approximately 60 nucleotides) immediately downstream from the 3' end of mature U1 RNA. Also in contrast to pre-mRNA, which is assembled into ribonucleoprotein (RNP) particles while still nascent RNA chains, the U1 RNA transcribed in isolated nuclei did not form RNP complexes by the criterion of reaction with a monoclonal antibody for the small nuclear RNP Sm proteins. This suggests that, unlike pre-mRNA-RNP particle formation, U1 small nuclear RNP assembly does not occur until after the completion of transcription. These results show that, despite their common synthesis by RNA polymerase II, mRNA and U1 small nuclear RNA differ markedly both in their extents of 3' processing and their temporal patterns of RNP assembly.


2010 ◽  
Vol 30 (10) ◽  
pp. 2411-2423 ◽  
Author(s):  
Mun Kyoung Kim ◽  
Yoon Soon Kang ◽  
Hsien-Tsung Lai ◽  
Nermeen H. Barakat ◽  
Deodato Magante ◽  
...  

ABSTRACT The small nuclear RNA (snRNA)-activating protein complex (SNAPc) is essential for transcription of genes coding for the snRNAs (U1, U2, etc.). In Drosophila melanogaster, the heterotrimeric DmSNAPc recognizes a 21-bp DNA sequence, the proximal sequence element A (PSEA), located approximately 40 to 60 bp upstream of the transcription start site. Upon binding the PSEA, DmSNAPc establishes RNA polymerase II preinitiation complexes on U1 to U5 promoters but RNA polymerase III preinitiation complexes on U6 promoters. Minor differences in nucleotide sequence of the U1 and U6 PSEAs determine RNA polymerase specificity; moreover, DmSNAPc adopts different conformations on these different PSEAs. We have proposed that such conformational differences in DmSNAPc play a key role in determining the different polymerase specificities of the U1 and U6 promoters. To better understand the structure of DmSNAPc-PSEA complexes, we have developed a novel protocol that combines site-specific protein-DNA photo-cross-linking with site-specific chemical cleavage of the protein. This protocol has allowed us to map regions within each of the three DmSNAPc subunits that contact specific nucleotide positions within the U1 and U6 PSEAs. These data help to establish the orientation of each DmSNAPc subunit on the DNA and have revealed cases in which different domains of the subunits differentially contact the U1 versus U6 PSEAs.


2001 ◽  
Vol 276 (34) ◽  
pp. 31786-31792 ◽  
Author(s):  
Kathleen J. McNamara-Schroeder ◽  
Roger F. Hennessey ◽  
Gale A. Harding ◽  
Richard C. Jensen ◽  
William E. Stumph

Sign in / Sign up

Export Citation Format

Share Document