scholarly journals Recycling of protein subunits during DNA translocation and cleavage by Type I restriction-modification enzymes

2011 ◽  
Vol 39 (17) ◽  
pp. 7656-7666 ◽  
Author(s):  
Michelle Simons ◽  
Mark D. Szczelkun
2004 ◽  
Vol 11 (9) ◽  
pp. 838-843 ◽  
Author(s):  
Ralf Seidel ◽  
John van Noort ◽  
Carsten van der Scheer ◽  
Joost G P Bloom ◽  
Nynke H Dekker ◽  
...  

PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e2887 ◽  
Author(s):  
Vitali Bialevich ◽  
Dhiraj Sinha ◽  
Katsiaryna Shamayeva ◽  
Alena Guzanova ◽  
David Řeha ◽  
...  

Type I restriction-modification enzymes are multisubunit, multifunctional molecular machines that recognize specific DNA target sequences, and their multisubunit organization underlies their multifunctionality. EcoR124I is the archetype of Type I restriction-modification family IC and is composed of three subunit types: HsdS, HsdM, and HsdR. DNA cleavage and ATP-dependent DNA translocation activities are housed in the distinct domains of the endonuclease/motor subunit HsdR. Because the multiple functions are integrated in this large subunit of 1,038 residues, a large number of interdomain contacts might be expected. The crystal structure of EcoR124I HsdR reveals a surprisingly sparse number of contacts between helicase domain 2 and the C-terminal helical domain that is thought to be involved in assembly with HsdM. Only two potential hydrogen-bonding contacts are found in a very small contact region. In the present work, the relevance of these two potential hydrogen-bonding interactions for the multiple activities of EcoR124I is evaluated by analysing mutant enzymes usingin vivoandin vitroexperiments. Molecular dynamics simulations are employed to provide structural interpretation of the functional data. The results indicate that the helical C-terminal domain is involved in the DNA translocation, cleavage, and ATPase activities of HsdR, and a role in controlling those activities is suggested.


2017 ◽  
Author(s):  
Vitali Bialevich ◽  
Dhiraj Sinha ◽  
Katsiaryna Shamayeva ◽  
Alena Guzanova ◽  
David Řeha ◽  
...  

Type I restriction-modification enzymes are multisubunit, multifunctional molecular machines that recognize specific DNA target sequences, and their multisubunit organization underlies their multifunctionality. EcoR124I is the archetype of Type I restriction-modification family IC and is composed of three subunit types, HsdS, HsdM, and HsdR. DNA cleavage and ATP-dependent DNA translocation activities are housed in the distinct domains of the endonuclease/motor subunit HsdR. Because the multiple functions are integrated in this large subunit of 1038 residues, a large number of interdomain contacts might be expected. The crystal structure of EcoR124I HsdR reveals a surprisingly sparse number of contacts between helicase domain 2 and the C-terminal helical domain that is thought to be involved in assembly with HsdM. Only two potential hydrogen-bonding contacts are found in a very small contact region. In the present work, the relevance of these two potential hydrogen-bonding interactions for the multiple activities of EcoR124I is evaluated by analysing mutant enzymes using in vivo and in vitro experiments. Molecular dynamics simulations are employed to provide structural interpretation of the functional data. The results indicate that the helical C-terminal domain is involved in the DNA translocation, cleavage, and ATPase activities of HsdR, and a role in controlling those activities is suggested.


2017 ◽  
Author(s):  
Vitali Bialevich ◽  
Dhiraj Sinha ◽  
Katsiaryna Shamayeva ◽  
Alena Guzanova ◽  
David Řeha ◽  
...  

Type I restriction-modification enzymes are multisubunit, multifunctional molecular machines that recognize specific DNA target sequences, and their multisubunit organization underlies their multifunctionality. EcoR124I is the archetype of Type I restriction-modification family IC and is composed of three subunit types, HsdS, HsdM, and HsdR. DNA cleavage and ATP-dependent DNA translocation activities are housed in the distinct domains of the endonuclease/motor subunit HsdR. Because the multiple functions are integrated in this large subunit of 1038 residues, a large number of interdomain contacts might be expected. The crystal structure of EcoR124I HsdR reveals a surprisingly sparse number of contacts between helicase domain 2 and the C-terminal helical domain that is thought to be involved in assembly with HsdM. Only two potential hydrogen-bonding contacts are found in a very small contact region. In the present work, the relevance of these two potential hydrogen-bonding interactions for the multiple activities of EcoR124I is evaluated by analysing mutant enzymes using in vivo and in vitro experiments. Molecular dynamics simulations are employed to provide structural interpretation of the functional data. The results indicate that the helical C-terminal domain is involved in the DNA translocation, cleavage, and ATPase activities of HsdR, and a role in controlling those activities is suggested.


2016 ◽  
Vol 4 (6) ◽  
Author(s):  
Alessandra G. de Melo ◽  
Simon J. Labrie ◽  
Jeannot Dumaresq ◽  
Richard J. Roberts ◽  
Denise M. Tremblay ◽  
...  

Brevibacterium linens is one of the main bacteria found in the smear of surface-ripened cheeses. The genome of the industrial strain SMQ-1335 was sequenced using PacBio. It has 4,209,935 bp, a 62.6% G+C content, 3,848 open reading frames, and 61 structural RNAs. A new type I restriction-modification system was identified.


2019 ◽  
Vol 15 (6) ◽  
pp. e1007841 ◽  
Author(s):  
Taylor M. Nye ◽  
Kristin M. Jacob ◽  
Elena K. Holley ◽  
Juan M. Nevarez ◽  
Suzanne Dawid ◽  
...  

2020 ◽  
Vol 48 (10) ◽  
pp. 5397-5406 ◽  
Author(s):  
Artem Isaev ◽  
Alena Drobiazko ◽  
Nicolas Sierro ◽  
Julia Gordeeva ◽  
Ido Yosef ◽  
...  

Abstract BREX (for BacteRiophage EXclusion) is a superfamily of common bacterial and archaeal defence systems active against diverse bacteriophages. While the mechanism of BREX defence is currently unknown, self versus non-self differentiation requires methylation of specific asymmetric sites in host DNA by BrxX (PglX) methyltransferase. Here, we report that T7 bacteriophage Ocr, a DNA mimic protein that protects the phage from the defensive action of type I restriction–modification systems, is also active against BREX. In contrast to the wild–type phage, which is resistant to BREX defence, T7 lacking Ocr is strongly inhibited by BREX, and its ability to overcome the defence could be complemented by Ocr provided in trans. We further show that Ocr physically associates with BrxX methyltransferase. Although BREX+ cells overproducing Ocr have partially methylated BREX sites, their viability is unaffected. The result suggests that, similar to its action against type I R–M systems, Ocr associates with as yet unidentified BREX system complexes containing BrxX and neutralizes their ability to both methylate and exclude incoming phage DNA.


2007 ◽  
Vol 282 (26) ◽  
pp. 18907-18913 ◽  
Author(s):  
Ana Cuervo ◽  
Marie-Christine Vaney ◽  
Alfred A. Antson ◽  
Paulo Tavares ◽  
Leonor Oliveira

2001 ◽  
Vol 67 (2) ◽  
pp. 929-937 ◽  
Author(s):  
David O' Sullivan ◽  
R. Paul Ross ◽  
Denis P. Twomey ◽  
Gerald F. Fitzgerald ◽  
Colin Hill ◽  
...  

ABSTRACT The bacteriophage resistance plasmid pAH90 (26,490 bp) is a natural cointegrate plasmid formed via homologous recombination between the type I restriction-modification specificity determinants (hsdS) of two smaller lactococcal plasmids, pAH33 (6,159 bp) and pAH82 (20,331 bp), giving rise to a bacteriophage-insensitive mutant following phage challenge (D. O'Sullivan, D. P. Twomey, A. Coffey, C. Hill, G. F. Fitzgerald, and R. P. Ross, Mol. Microbiol. 36:866–876; 2000). In this communication we provide evidence that the recombination event is favored by phage infection. The entire nucleotide sequence of plasmid pAH90 was determined and found to contain 24 open reading frames (ORFs) responsible for phenotypes which include restriction-modification, phage adsorption inhibition, plasmid replication, cadmium resistance, cobalt transport, and conjugative mobilization. The cadmium resistance property, encoded by the cadA gene, which has an associated regulatory gene (cadC), is of particular interest, as it facilitated the selection of pAH90 in other phage-sensitive lactococci after electroporation. In addition, we report the identification of a group II self-splicing intron bounded by two exons which have the capacity to encode a relaxase implicated in conjugation in gram-positive bacteria. The functionality of this intron was evident by demonstrating splicing in vivo. Given that pAH90 encodes potent phage defense systems which act at different stages in the phage lytic cycle, the linkage of these with a food-grade selectable marker on a replicon that can be mobilized among lactococci has significant potential for natural strain improvement for industrial dairy fermentations which are susceptible to phage inhibition.


Sign in / Sign up

Export Citation Format

Share Document