scholarly journals One-step random mutagenesis by error-prone rolling circle amplification

2004 ◽  
Vol 32 (19) ◽  
pp. e145-e145 ◽  
Author(s):  
R. Fujii
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Thanyarat Chaibun ◽  
Jiratchaya Puenpa ◽  
Tatchanun Ngamdee ◽  
Nimaradee Boonapatcharoen ◽  
Pornpat Athamanolap ◽  
...  

AbstractCoronavirus disease 2019 (COVID-19) is a highly contagious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Diagnosis of COVID-19 depends on quantitative reverse transcription PCR (qRT-PCR), which is time-consuming and requires expensive instrumentation. Here, we report an ultrasensitive electrochemical biosensor based on isothermal rolling circle amplification (RCA) for rapid detection of SARS-CoV-2. The assay involves the hybridization of the RCA amplicons with probes that were functionalized with redox active labels that are detectable by an electrochemical biosensor. The one-step sandwich hybridization assay could detect as low as 1 copy/μL of N and S genes, in less than 2 h. Sensor evaluation with 106 clinical samples, including 41 SARS-CoV-2 positive and 9 samples positive for other respiratory viruses, gave a 100% concordance result with qRT-PCR, with complete correlation between the biosensor current signals and quantitation cycle (Cq) values. In summary, this biosensor could be used as an on-site, real-time diagnostic test for COVID-19.


2006 ◽  
Vol 1 (5) ◽  
pp. 2493-2497 ◽  
Author(s):  
Ryota Fujii ◽  
Motomitsu Kitaoka ◽  
Kiyoshi Hayashi

2019 ◽  
Vol 1067 ◽  
pp. 129-136 ◽  
Author(s):  
Nini Luo ◽  
Qianfeng Xia ◽  
Lutan Zhang ◽  
Yuhong Zhang ◽  
Lizhen Huang ◽  
...  

2021 ◽  
Author(s):  
Mengqi Huang ◽  
Erhu Xiong ◽  
Menglu Hu ◽  
Huahua Yue ◽  
Tian Tian ◽  
...  

DNA/RNA-gold nanoparticle (DNA/RNA-AuNP) nanoprobes have been widely employed for nanobiotechnology applications. Here we discovered that both thiolated and non-thiolated DNA/RNA can be efficiently attached to AuNPs to achieve high-stable spherical nucleic acid (SNA) within minutes under a domestic microwave (MW)-assisted heating-dry circumstance. Further studies showed that for non-thiolated DNA/RNA the conjugation is poly (T/U) tag dependent. Spectroscopy, test strip hybridization, and loading counting experiments indicate that low-affinity poly (T/U) tag mediates the formation of a standing-up conformation, which is distributed in the outer layer of such a SNA structure. In further applications study, CRISPR/Cas9-sgRNA (135 bp), RNA from Nucleocapsid (N) gene of SARS-CoV-2 (1279 bp), and rolling circle amplification (RCA) DNA products (over 1000 bp) could be successfully attached on AuNPs, which overcomes the routine methods in long-chain nucleic acid-AuNP conjugation, exhibiting great promise in novel biosensing and nucleic acids delivery strategy. This novel heating-dry strategy has improved the traditional DNA/RNA-AuNP conjugation methods in simplicity, rapidity, cost, and universality.


2020 ◽  
Author(s):  
Thanyarat Chaibun ◽  
Jiratchaya Puenpa ◽  
Tatchanun Ngamdee ◽  
Nimaradee Boonapatcharoen ◽  
Pornpat Athamanolap ◽  
...  

Abstract COVID-19 is a highly contagious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Diagnosis of COVID-19 depends on quantitative reverse transcription PCR (qRT-PCR), which is time-consuming and requires expensive instrumentation. Here, we report an ultrasensitive electrochemical biosensor based on isothermal rolling circle amplification (RCA) for rapid detection of SARS-CoV-2. The assay involves the hybridization of the RCA amplicons with probes that were functionalized with redox active labels that are detectable by an electrochemical biosensor. The one-step sandwich hybridization assay could detect as low as 1 copy/mL of N and S genes, in less than 2 hours. Sensor evaluation with 105 clinical samples, including 40 SARS-CoV-2 positive and 9 samples positive for other respiratory viruses, gave a 100% concordance result with qRT-PCR, with complete correlation between the biosensor current signals and quantitation cycle (Cq) values. In summary, this biosensor could be used as an on-site, real-time diagnostic test for COVID-19.


2017 ◽  
Vol 53 (21) ◽  
pp. 3038-3041 ◽  
Author(s):  
Yishun Huang ◽  
Wanlin Xu ◽  
Guoyuan Liu ◽  
Leilei Tian

Rolling circle amplification for cost-effective and facile fabrication of a pure DNA hydrogel with highly improved catalytic stability.


The Analyst ◽  
2018 ◽  
Vol 143 (20) ◽  
pp. 4974-4980 ◽  
Author(s):  
Haiping Wu ◽  
Xiaoyan Zhou ◽  
Wei Cheng ◽  
Taixian Yuan ◽  
Min Zhao ◽  
...  

A one-step, rapid fluorescence biosensing method has been developed for ultrasensitive detection of BCR–ABL1 fusion gene based on a DNA machine and multiple primer-like rolling circle amplification.


2017 ◽  
Author(s):  
Bo Tian ◽  
Peter Svedlindh ◽  
Mattias Strömberg ◽  
Erik Wetterskog

In this work, we demonstrate for the first time, a ferromagnetic resonance (FMR) based homogeneous and volumetric biosensor for magnetic label detection. Two different isothermal amplification methods, <i>i.e.</i>, rolling circle amplification (RCA) and loop-mediated isothermal amplification (LAMP) are adopted and combined with a standard electron paramagnetic resonance (EPR) spectrometer for FMR biosensing. For RCA-based FMR biosensor, binding of RCA products of a synthetic Vibrio cholerae target DNA sequence gives rise to the formation of aggregates of magnetic nanoparticles. Immobilization of nanoparticles within the aggregates leads to a decrease of the net anisotropy of the system and a concomitant increase of the resonance field. A limit of detection of 1 pM is obtained with an average coefficient of variation of 0.16%, which is superior to the performance of other reported RCA-based magnetic biosensors. For LAMP-based sensing, a synthetic Zika virus target oligonucleotide is amplified and detected in 20% serum samples. Immobilization of magnetic nanoparticles is induced by their co-precipitation with Mg<sub>2</sub>P<sub>2</sub>O<sub>7</sub> (a by-product of LAMP) and provides a detection sensitivity of 100 aM. The fast measurement, high sensitivity and miniaturization potential of the proposed FMR biosensing technology makes it a promising candidate for designing future point-of-care devices.<br>


Sign in / Sign up

Export Citation Format

Share Document