nucleic acids delivery
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 14)

H-INDEX

14
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Jiamiao Lu ◽  
Elissa Swearingen ◽  
Miki Hardy ◽  
Patrick Collins ◽  
Bin Wu ◽  
...  

Small interfering RNAs (siRNA) therapeutics have developed rapidly in recent years, despite the challenges associated with delivery of large, highly charged nucleic acids. Delivery of siRNA therapeutics to the liver has been established, with conjugation of siRNA to N-acetylgalactosamine (GalNAc) providing durable gene knockdown in hepatocytes following subcutaneous injection. GalNAc binds the asialoglycoprotein receptor (ASGPR) that is highly expressed on hepatocytes and exploits this scavenger receptor to deliver siRNA across the plasma membrane by endocytosis. However, siRNA needs to access the RNA-induced silencing complex (RISC) in the cytoplasm to provide effective gene knockdown and the entire siRNA delivery process is very inefficient, likely due to steps required for endosomal escape, intracellular trafficking, and stability of siRNA. To reveal the cellular factors limiting delivery of siRNA therapeutics, we performed a pooled, genome wide knockout screen based on delivery of GalNAc conjugated siRNA targeting the HPRT1 gene in the human hepatocellular carcinoma line Hep3B. Our primary pooled genome wide knockout screen identified candidate genes that when knocked out significantly enhanced siRNA efficacy in Hep3B cells. Follow-up studies indicate that knockout of one gene in particular, RAB18, improved siRNA efficacy.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2053
Author(s):  
Adelina-Gabriela Niculescu ◽  
Alexandra Cătălina Bîrcă ◽  
Alexandru Mihai Grumezescu

Nucleic acids represent a promising lead for engineering the immune system. However, naked DNA, mRNA, siRNA, and other nucleic acids are prone to enzymatic degradation and face challenges crossing the cell membrane. Therefore, increasing research has been recently focused on developing novel delivery systems that are able to overcome these drawbacks. Particular attention has been drawn to designing lipid and polymer-based nanoparticles that protect nucleic acids and ensure their targeted delivery, controlled release, and enhanced cellular uptake. In this respect, this review aims to present the recent advances in the field, highlighting the possibility of using these nanosystems for therapeutic and prophylactic purposes towards combatting a broad range of infectious, chronic, and genetic disorders.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Takuya Aoshima ◽  
Yukari Kobayashi ◽  
Hisayoshi Takagi ◽  
Kenta Iijima ◽  
Masahiro Sato ◽  
...  

Abstract Background Improved genome-editing via oviductal nucleic acids delivery (i-GONAD) is a new technology that facilitates in situ genome-editing of mammalian zygotes exiting the oviductal lumen. The i-GONAD technology has been developed for use in mice, rats, and hamsters; however, oligonucleotide (ODN)-based knock-in (KI) is more inefficient in rats than mice. To improve the efficiency of i-GONAD in rats we examined KI efficiency using three guide RNAs (gRNA), crRNA1, crRNA2 and crRNA3. These gRNAs recognize different portions of the target locus, but also overlap each other in the target locus. We also examined the effects of commercially available KI -enhancing drugs (including SCR7, L755,507, RS-1, and HDR enhancer) on i-GONAD-mediated KI efficiency. Results The KI efficiency in rat fetuses generated after i-GONAD with crRNA2 and single-stranded ODN was significantly higher (24%) than crRNA1 (5%; p < 0.05) or crRNA3 (0%; p < 0.01). The KI efficiency of i-GONAD with triple gRNAs was 11%. These findings suggest that KI efficiency largely depends on the type of gRNA used. Furthermore, the KI efficiency drugs, SCR7, L755,507 and HDR enhancer, all of which are known to enhance KI efficiency, increased KI efficiency using the i-GONAD with crRNA1 protocol. In contrast, only L755,507 (15 μM) increased KI efficiency using the i-GONAD with crRNA2 protocol. None of them were significantly different. Conclusions We attempted to improve the KI efficiency of i-GONAD in rats. We demonstrated that the choice of gRNA is important for determining KI efficiency and insertion and deletion rates. Some drugs (e.g. SCR7, L755,507 and HDR enhancer) that are known to increase KI efficiency in culture cells were found to be effective in i-GONAD in rats, but their effects were limited.


2021 ◽  
Author(s):  
Mengqi Huang ◽  
Erhu Xiong ◽  
Menglu Hu ◽  
Huahua Yue ◽  
Tian Tian ◽  
...  

DNA/RNA-gold nanoparticle (DNA/RNA-AuNP) nanoprobes have been widely employed for nanobiotechnology applications. Here we discovered that both thiolated and non-thiolated DNA/RNA can be efficiently attached to AuNPs to achieve high-stable spherical nucleic acid (SNA) within minutes under a domestic microwave (MW)-assisted heating-dry circumstance. Further studies showed that for non-thiolated DNA/RNA the conjugation is poly (T/U) tag dependent. Spectroscopy, test strip hybridization, and loading counting experiments indicate that low-affinity poly (T/U) tag mediates the formation of a standing-up conformation, which is distributed in the outer layer of such a SNA structure. In further applications study, CRISPR/Cas9-sgRNA (135 bp), RNA from Nucleocapsid (N) gene of SARS-CoV-2 (1279 bp), and rolling circle amplification (RCA) DNA products (over 1000 bp) could be successfully attached on AuNPs, which overcomes the routine methods in long-chain nucleic acid-AuNP conjugation, exhibiting great promise in novel biosensing and nucleic acids delivery strategy. This novel heating-dry strategy has improved the traditional DNA/RNA-AuNP conjugation methods in simplicity, rapidity, cost, and universality.


Author(s):  
Anastasia S Khodakova ◽  
Daniela Vidal Vilchis ◽  
Dana Blackburn ◽  
Ferdinand Amanor ◽  
Buck S Samuel

Abstract The free-living nematode C.elegans remains one of the most robust and flexible genetic systems for interrogating the complexities of animal biology. Targeted genetic manipulations, such as RNA interference (RNAi), CRISPR/Cas9- or array-based transgenesis, all depend on initial delivery of nucleic acids. Delivery of dsRNA by feeding can be effective, but expression in E. coli is not conducive to experiments intended to remain sterile or with defined microbial communities. Soaking-based delivery requires prolonged exposure of animals to high material concentrations without a food source and is of limited throughput. Last, microinjection of individual animals can precisely deliver materials to animals’ germlines, but is limited by the need to target and inject each animal one-by-one. Thus, we sought to address some of these challenges in nucleic acid delivery by developing a population-scale delivery method. We demonstrate efficient electroporation-mediated delivery of dsRNA throughout the worm and effective RNAi-based silencing, including in the germline. Finally, we show that guide RNA delivered by electroporation can be utilized by transgenic Cas9 expressing worms for population-scale genetic targeting. Together, these methods expand the scale and scope of genetic methodologies that can be applied to the C.elegans system.


2020 ◽  
Vol 4 (4) ◽  
Author(s):  
Shuji Takabayashi ◽  
◽  
Takuya Aoshima ◽  
Yukari Kobayashi ◽  
Hisayoshi Takagi ◽  
...  

Improved-Genome editing via Oviductal Nucleic Acids Delivery (i-GONAD) was developed for in situ genome editing of the preimplantation embryos present within the oviductal lumen of mice. This method is based on intra-oviductal instillation of genome editing components and subsequent in vivo electroporation (EP) in the entire oviduct. Therefore, i-GONAD differs from the previous methods (i.e., zygote microinjection and in vitro EP) in producing genome-edited mice, which relied on ex vivo handling of preimplantation embryos and egg transfer to the recipient females. We have previously demonstrated that i-GONAD can be successfully applied to produce genome-edited rats, including albino Sprague-Dawley and albino Lewis rats (however, not pigmented Brown Norway [BN] rats). We observed that the successful i-GONAD was dependent on the mouse strain used; for example, in random-bred mice, such as ICR and C3H/He × C57BL/6, it was successful under relatively stringent electrical conditions but not in the C57BL/6 strain. Under less stringent conditions, i-GONAD was successful in the C57BL/6 strain. We speculated that this would also be true for i-GONAD using BN rats. On applying a current of >500 mA, we failed to obtain rat offspring (fetuses/newborns); however, i-GONAD under a current of 100-300 mA using NEPA21 (NEPA GENE) led to the production of genome-edited BN rats with efficiencies of 75%-100%. Similarly, i-GONAD, under a current of 150-200 mA using CUY21EDIT II (BEX Co.) led to the production of genome-edited BN rats with efficiencies of 24%-55%. These experiments suggest the importance of selecting the appropriate current value, depending on the rat strain used, when performing i-GONAD.


2020 ◽  
Author(s):  
Anastasia S. Khodakova ◽  
Daniela Vidal Vilchis ◽  
Ferdinand Amanor ◽  
Buck S. Samuel

ABSTRACTThe free-living nematode C.elegans remains one of the most robust and flexible genetic systems for inter-rogating the complexities of animal biology. Targeted genetic manipulations, such as RNA interference (RNAi), CRISPR/Cas9- or array-based transgenesis, all depend on initial delivery of nucleic acids. Delivery of dsRNA by feeding can be effective, but expression in E. coli is not conducive to experiments intended to remain sterile or with defined microbial communities. Soaking-based delivery requires prolonged exposure of animals to high material concentrations without a food source and is of limited throughput. Last, microinjection of individual animals can precisely deliver materials to animals’ germlines, but is limited by the need to target and inject each animal one-by-one. Thus, we sought to address some of these challenges in nucleic acid delivery by developing a population-scale delivery method. We demonstrate efficient electroporation-mediated delivery of dsRNA throughout the worm and effective RNAi-based silencing, including in the germline. Finally, we show that guide RNA delivered by electroporation can be utilized by transgenic Cas9 expressing worms for population-scale genetic targeting. Together, these methods expand the scale and scope of genetic methodologies that can be applied to the C.elegans system.


2020 ◽  
Vol 3 (5) ◽  
pp. 2779-2795 ◽  
Author(s):  
Jin Huang ◽  
Wenjie Ma ◽  
Huanhuan Sun ◽  
Huizhen Wang ◽  
Xiaoxiao He ◽  
...  

Author(s):  
Agnieszka Fus-Kujawa ◽  
Paulina Teper ◽  
Malwina Botor ◽  
Katarzyna Klarzyńska ◽  
Łukasz Sieroń ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document