Myoinositol Inhibits Proliferation of Cultured Schwann Cells: Evidence for Neurotoxicity of Myoinositol

Development ◽  
1991 ◽  
Vol 112 (1) ◽  
pp. 33-42
Author(s):  
P.A. Eccleston ◽  
R. Mirsky ◽  
K.R. Jessen

In the developing peripheral nerve, Schwann cells proliferate rapidly and then become quiescent, an essential step in control of Schwann cell differentiation. Cell proliferation is controlled by growth factors that can exert positive or inhibitory influences on DNA synthesis. It has been well established that neonatal Schwann cells divide very slowly in culture when separated from neurons but here we show that when culture was continued for several months some cells began to proliferate rapidly and non-clonal lines of immortalised Schwann cells were established which could be passaged for over two years. These cells had a similar molecular phenotype to short-term cultured Schwann cells, except that they expressed intracellular and cell surface fibronectin. The difference in proliferation rates between short- and long-term cultured Schwann cells appeared to be due in part to the secretion by short-term cultured Schwann cells of growth inhibitory activity since DNA synthesis of long-term, immortalised Schwann cells was inhibited by conditioned medium from short-term cultures. This conditioned medium also inhibited DNA synthesis in short-term Schwann cells stimulated to divide by glial growth factor or elevation of intracellular cAMP. The growth inhibitory activity was not detected in the medium of long-term immortalised Schwann cells, epineurial fibroblasts, a Schwannoma (33B), astrocytes or a fibroblast-like cell-line (3T3) and it did not inhibit serum-induced DNA synthesis in epineurial fibroblasts, 33B cells or 3T3 cells. The activity was apparently distinct from transforming growth factor-beta, activin, IL6, epidermal growth factor, atrial natriuretic peptide and gamma-interferon and was heat and acid stable, resistant to collagenase and destroyed by trypsin treatment. We raise the possibility that loss of an inhibitory autocrine loop may contribute to the rapid proliferation of long-term cultured Schwann cells and that an autocrine growth inhibitor may have a role in the cessation of Schwann cell division that precedes differentiation in peripheral nerve development.


2008 ◽  
Vol 23 (6) ◽  
pp. 555-560 ◽  
Author(s):  
Tatiana Duobles ◽  
Thais de Sousa Lima ◽  
Beatriz de Freitas Azevedo Levy ◽  
Gerson Chadi

PURPOSE: The neurotrophic factor fibroblast growth factor-2 (FGF-2, bFGF) and Ca++ binding protein S100ß are expressed by the Schwann cells of the peripheral nerves and by the satellite cells of the dorsal root ganglia (DRG). Recent studies have pointed out the importance of the molecules in the paracrine mechanisms related to neuronal maintenance and plasticity of lesioned motor and sensory peripheral neurons. Moreover, cultured Schwann cells have been employed experimentally in the treatment of central nervous system lesions, in special the spinal cord injury, a procedure that triggers an enhanced sensorymotor function. Those cells have been proposed to repair long gap nerve injury. METHODS: Here we used double labeling immunohistochemistry and Western blot to better characterize in vitro and in vivo the presence of the proteins in the Schwann cells and in the satellite cells of the DRG as well as their regulation in those cells after a crush of the rat sciatic nerve. RESULTS: FGF-2 and S100ß are present in the Schwann cells of the sciatic nerve and in the satellite cells of the DRG. S100ß positive satellite cells showed increased size of the axotomized DRG and possessed elevated amount of FGF-2 immunoreactivity. Reactive satellite cells with increased FGF-2 labeling formed a ring-like structure surrounding DRG neuronal cell bodies.Reactive S100ß positive Schwann cells of proximal stump of axotomized sciatic nerve also expressed higher amounts of FGF-2. CONCLUSION: Reactive peripheral glial cells synthesizing FGF-2 and S100ß may be important in wound repair and restorative events in the lesioned peripheral nerves.


Neuroscience ◽  
1997 ◽  
Vol 82 (3) ◽  
pp. 927-934 ◽  
Author(s):  
S.D Jeftinija ◽  
K.V Jeftinija

1985 ◽  
Vol 14 (4) ◽  
pp. 619-635 ◽  
Author(s):  
James H. Meador-Woodruff ◽  
Jun E. Yoshino ◽  
John W. Bigbee ◽  
Brenda L. Lewis ◽  
George H. Devries

1991 ◽  
Vol 633 (1 Glial-Neurona) ◽  
pp. 537-539 ◽  
Author(s):  
H. J. S. STEWART ◽  
P. A. ECCLESTON ◽  
K. R. JESSEN ◽  
R. MIRSKY

PLoS ONE ◽  
2012 ◽  
Vol 7 (12) ◽  
pp. e51824 ◽  
Author(s):  
Ying Wang ◽  
Hong-Lin Teng ◽  
Zhi-hui Huang

Sign in / Sign up

Export Citation Format

Share Document