scholarly journals EXTH-55. PET, IMAGE-GUIDED HDAC INHIBITION OF PEDIATRIC DIFFUSE MIDLINE GLIOMA IMPROVES SURVIVAL IN MURINE MODELS

2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii99-ii99
Author(s):  
Umberto Tosi ◽  
Harikrishna Kommidi ◽  
Oluwaseyi Adeuyan ◽  
Hua Guo ◽  
Uday Bhanu Maachani ◽  
...  

Abstract Efforts at altering the dismal prognosis of pediatric midline gliomas focus on direct-delivery strategies like convection-enhanced delivery (CED), where a cannula is implanted into tumor. Successful CED treatments require confirmation of tumor coverage, dosimetry, and longitudinal in vivo pharmacokinetics monitoring. These properties would be best determined clinically with image guided dosimetry using theranostic compounds, agents with both therapeutic and imaging properties. In this study, we combine CED with novel, molecular-grade positron emission tomography (PET) imaging. We synthesized PETobinostat, a novel PET-imageable HDAC inhibitor, and showed its effectiveness against DIPG models in vitro and in vivo. Cell studies against a library of DIPG cells show nanomolar IC50, allowing for rapid in vivo translation. When injected in mice, PET shows the need of CED to achieve high brain concentrations, as systemic delivery yields inferior brain permeation. PET also shows that CED has significant mouse-to-mouse variability: imaging is used to modulate CED infusions to maximize tumor saturation over time. By determining condition-specific clearance half-life (ranging between 60 and 120 minutes), we maximized tumor permeation above therapeutic concentrations for at least 12 hours. This PET-guided approach resulted in decrease tumor cellularity (p= 0.001), increased apoptosis (p= 0.034), decreased dividing cells (p= 0.003), and recovery of histone-3 acetylation (p < 0.0001) when compared against vehicle and systemic-treated controls in tumor-bearing mice. Further, the PET-guided CED of PETobinostat resulted in survival prolongation (67.5 vs. 35 days, p = 0.0001) when compared to systemic administration of another potent HDAC inhibitor (Panobinostat). CED without PET guidance failed at improving survival (37.5 vs. 35 days, p = 0.74). No significant toxicity was observed following CED of PETobinostat. This work demonstrates how personalized image-guided drug delivery of a novel HDAC inhibitor may be useful in potentiating CED-based treatment platforms, and supports a foundation for the clinical translation of PETobinostat.

2020 ◽  
Vol 6 (30) ◽  
pp. eabb4105 ◽  
Author(s):  
Umberto Tosi ◽  
Harikrishna Kommidi ◽  
Oluwaseyi Adeuyan ◽  
Hua Guo ◽  
Uday Bhanu Maachani ◽  
...  

Efforts at altering the dismal prognosis of pediatric midline gliomas focus on direct delivery strategies like convection-enhanced delivery (CED), where a cannula is implanted into tumor. Successful CED treatments require confirmation of tumor coverage, dosimetry, and longitudinal in vivo pharmacokinetic monitoring. These properties would be best determined clinically with image-guided dosimetry using theranostic agents. In this study, we combine CED with novel, molecular-grade positron emission tomography (PET) imaging and show how PETobinostat, a novel PET-imageable HDAC inhibitor, is effective against DIPG models. PET data reveal that CED has significant mouse-to-mouse variability; imaging is used to modulate CED infusions to maximize tumor saturation. The use of PET-guided CED results in survival prolongation in mouse models; imaging shows the need of CED to achieve high brain concentrations. This work demonstrates how personalized image-guided drug delivery may be useful in potentiating CED-based treatment algorithms and supports a foundation for clinical translation of PETobinostat.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Carlos Velasco ◽  
Adriana Mota-Cobián ◽  
Jesús Mateo ◽  
Samuel España

Abstract Background Multi-tracer positron emission tomography (PET) imaging can be accomplished by applying multi-tracer compartment modeling. Recently, a method has been proposed in which the arterial input functions (AIFs) of the multi-tracer PET scan are explicitly derived. For that purpose, a gamma spectroscopic analysis is performed on blood samples manually withdrawn from the patient when at least one of the co-injected tracers is based on a non-pure positron emitter. Alternatively, these blood samples required for the spectroscopic analysis may be obtained and analyzed on site by an automated detection device, thus minimizing analysis time and radiation exposure of the operating personnel. In this work, a new automated blood sample detector based on silicon photomultipliers (SiPMs) for single- and multi-tracer PET imaging is presented, characterized, and tested in vitro and in vivo. Results The detector presented in this work stores and analyzes on-the-fly single and coincidence detected events. A sensitivity of 22.6 cps/(kBq/mL) and 1.7 cps/(kBq/mL) was obtained for single and coincidence events respectively. An energy resolution of 35% full-width-half-maximum (FWHM) at 511 keV and a minimum detectable activity of 0.30 ± 0.08 kBq/mL in single mode were obtained. The in vivo AIFs obtained with the detector show an excellent Pearson’s correlation (r = 0.996, p < 0.0001) with the ones obtained from well counter analysis of discrete blood samples. Moreover, in vitro experiments demonstrate the capability of the detector to apply the gamma spectroscopic analysis on a mixture of 68Ga and 18F and separate the individual signal emitted from each one. Conclusions Characterization and in vivo evaluation under realistic experimental conditions showed that the detector proposed in this work offers excellent sensibility and stability. The device also showed to successfully separate individual signals emitted from a mixture of radioisotopes. Therefore, the blood sample detector presented in this study allows fully automatic AIFs measurements during single- and multi-tracer PET studies.


Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1288
Author(s):  
Wendy Dong ◽  
Boris Kantor

CRISPR/Cas technology has revolutionized the fields of the genome- and epigenome-editing by supplying unparalleled control over genomic sequences and expression. Lentiviral vector (LV) systems are one of the main delivery vehicles for the CRISPR/Cas systems due to (i) its ability to carry bulky and complex transgenes and (ii) sustain robust and long-term expression in a broad range of dividing and non-dividing cells in vitro and in vivo. It is thus reasonable that substantial effort has been allocated towards the development of the improved and optimized LV systems for effective and accurate gene-to-cell transfer of CRISPR/Cas tools. The main effort on that end has been put towards the improvement and optimization of the vector’s expression, development of integrase-deficient lentiviral vector (IDLV), aiming to minimize the risk of oncogenicity, toxicity, and pathogenicity, and enhancing manufacturing protocols for clinical applications required large-scale production. In this review, we will devote attention to (i) the basic biology of lentiviruses, and (ii) recent advances in the development of safer and more efficient CRISPR/Cas vector systems towards their use in preclinical and clinical applications. In addition, we will discuss in detail the recent progress in the repurposing of CRISPR/Cas systems related to base-editing and prime-editing applications.


Author(s):  
Naresh Damuka ◽  
Miranda Orr ◽  
Paul W. Czoty ◽  
Jeffrey L. Weiner ◽  
Thomas J. Martin ◽  
...  

AbstractMicrotubules (MTs) are structural units in the cytoskeleton. In brain cells they are responsible for axonal transport, information processing, and signaling mechanisms. Proper function of these processes is critical for healthy brain functions. Alcohol and substance use disorders (AUD/SUDs) affects the function and organization of MTs in the brain, making them a potential neuroimaging marker to study the resulting impairment of overall neurobehavioral and cognitive processes. Our lab reported the first brain-penetrant MT-tracking Positron Emission Tomography (PET) ligand [11C]MPC-6827 and demonstrated its in vivo utility in rodents and non-human primates. To further explore the in vivo imaging potential of [11C]MPC-6827, we need to investigate its mechanism of action. Here, we report preliminary in vitro binding results in SH-SY5Y neuroblastoma cells exposed to ethanol (EtOH) or cocaine in combination with multiple agents that alter MT stability. EtOH and cocaine treatments increased MT stability and decreased free tubulin monomers. Our initial cell-binding assay demonstrated that [11C]MPC-6827 may have high affinity to free/unbound tubulin units. Consistent with this mechanism of action, we observed lower [11C]MPC-6827 uptake in SH-SY5Y cells after EtOH and cocaine treatments (e.g., fewer free tubulin units). We are currently performing in vivo PET imaging and ex vivo biodistribution studies in rodent and nonhuman primate models of AUD and SUDs and Alzheimer's disease.


2021 ◽  
Vol 22 (5) ◽  
pp. 2285
Author(s):  
Thu Hang Lai ◽  
Susann Schröder ◽  
Magali Toussaint ◽  
Sladjana Dukić-Stefanović ◽  
Mathias Kranz ◽  
...  

The adenosine A2A receptor (A2AR) represents a potential therapeutic target for neurodegenerative diseases. Aiming at the development of a positron emission tomography (PET) radiotracer to monitor changes of receptor density and/or occupancy during the A2AR-tailored therapy, we designed a library of fluorinated analogs based on a recently published lead compound (PPY). Among those, the highly affine 4-fluorobenzyl derivate (PPY1; Ki(hA2AR) = 5.3 nM) and the 2-fluorobenzyl derivate (PPY2; Ki(hA2AR) = 2.1 nM) were chosen for 18F-labeling via an alcohol-enhanced copper-mediated procedure starting from the corresponding boronic acid pinacol ester precursors. Investigations of the metabolic stability of [18F]PPY1 and [18F]PPY2 in CD-1 mice by radio-HPLC analysis revealed parent fractions of more than 76% of total activity in the brain. Specific binding of [18F]PPY2 on mice brain slices was demonstrated by in vitro autoradiography. In vivo PET/magnetic resonance imaging (MRI) studies in CD-1 mice revealed a reasonable high initial brain uptake for both radiotracers, followed by a fast clearance.


2019 ◽  
Vol 12 (4) ◽  
pp. 180 ◽  
Author(s):  
Changde Zhang ◽  
Shanchun Guo ◽  
Qiu Zhong ◽  
Qiang Zhang ◽  
Ahamed Hossain ◽  
...  

ZL277 is a prodrug of belinostat with enhanced bioavailability and efficacy as a pan histone deacetylase (HDAC) inhibitor. In this study, we investigated the metabolism and pharmacokinetics of ZL277 in liver S9 fractions, liver microsomes, liver cytosol, and in mice. Metabolic products were identified and quantified by a combination of liquid chromatography and tandem mass spectrometry. The in vitro metabolic profile of ZL277 includes ZL277-B(OH)2-452, the major oxidative metabolite ZL277-OH-424, the active ingredient belinostat, belinostat amide, belinostat acid, and methylated belinostat in liver S9 fractions. Both ZL277-OH-424 and belinostat underwent further glucuronidation in liver microsome, whereas only ZL277-OH-424, but not belinostat, underwent some level of sulfation in rat liver cytosols. These metabolites were examined in plasma and in a breast tumor model in vivo. They were also examined in urine and feces from mice treated with ZL277. The pharmacokinetic study of ZL277 showed the parameters of active drug belinostat with a half-life (t1/2) of 10.7 h, an area under curve value (AUC) of 1506.9 ng/mL*h, and a maximum plasma concentration (Cmax) of 172 ng/mL, reached 3 h after a single dose of 10 mg/kg. The hydrolysis product of the prodrug, ZL277-B(OH)2-452 showed an AUC of 8306 ng/mL*h and Cmax of 931 ng/mL 3 h after drug administration.


2017 ◽  
Vol 114 (30) ◽  
pp. E6147-E6156 ◽  
Author(s):  
Dou Yu ◽  
Omar F. Khan ◽  
Mario L. Suvà ◽  
Biqin Dong ◽  
Wojciech K. Panek ◽  
...  

Brain tumor-initiating cells (BTICs) have been identified as key contributors to therapy resistance, recurrence, and progression of diffuse gliomas, particularly glioblastoma (GBM). BTICs are elusive therapeutic targets that reside across the blood–brain barrier, underscoring the urgent need to develop novel therapeutic strategies. Additionally, intratumoral heterogeneity and adaptations to therapeutic pressure by BTICs impede the discovery of effective anti-BTIC therapies and limit the efficacy of individual gene targeting. Recent discoveries in the genetic and epigenetic determinants of BTIC tumorigenesis offer novel opportunities for RNAi-mediated targeting of BTICs. Here we show that BTIC growth arrest in vitro and in vivo is accomplished via concurrent siRNA knockdown of four transcription factors (SOX2, OLIG2, SALL2, and POU3F2) that drive the proneural BTIC phenotype delivered by multiplexed siRNA encapsulation in the lipopolymeric nanoparticle 7C1. Importantly, we demonstrate that 7C1 nano-encapsulation of multiplexed RNAi is a viable BTIC-targeting strategy when delivered directly in vivo in an established mouse brain tumor. Therapeutic potential was most evident via a convection-enhanced delivery method, which shows significant extension of median survival in two patient-derived BTIC xenograft mouse models of GBM. Our study suggests that there is potential advantage in multiplexed targeting strategies for BTICs and establishes a flexible nonviral gene therapy platform with the capacity to channel multiplexed RNAi schemes to address the challenges posed by tumor heterogeneity.


Sign in / Sign up

Export Citation Format

Share Document