scholarly journals OS03.1 The role of the immune system in facilitating the formation of brain metastasis of breast cancer

2017 ◽  
Vol 19 (suppl_3) ◽  
pp. iii5-iii5
Author(s):  
D. A. M. Mustafa ◽  
R. M. Pedrosa ◽  
A. Sieuwerts ◽  
M. Smid ◽  
V. de Weerd ◽  
...  
Therapy ◽  
2006 ◽  
Vol 3 (1) ◽  
pp. 97-112 ◽  
Author(s):  
Rose Marie Tyson ◽  
Dale F Kraemer ◽  
Matthew A Hunt ◽  
Leslie L Muldoon ◽  
Peter Orbay ◽  
...  

2021 ◽  
pp. 1-10
Author(s):  
Bader Alshehri

Breast cancer being the most malignant and lethal disease persistent among women globally. Immunotherapy as a new treatment modality has emerged in understanding the loopholes in the treatment of breast cancer which is mainly attributed to the potential of tumor cells to evade and survive the immune response by developing various strategies. Therefore, improved understanding of the immune evasion by cancer cells and the monoclonal antibodies against PD- and PD-L1 can help us in the diagnosis of this malignancy. Here in this article, I have highlighted that in addition to focusing on other strategies for breast cancer treatment, the involvement of immune system in breast cancer is vital for the understanding of this malignancy. Further, the complete involvement of immune system in the relapse or recurrence of the breast tumor and have also highlighted the role of vaccines, PD-1 and CTLA-4 with the recent advances in the field. Moreover, in addition to the application of immunotherapy as a sole therapy, combinations of immunotherapy with various strategies like targeting it with MEK inhibitors, Vaccines, chemotherapy and PARP inhibitor has shown to have significant benefits is also discussed in this article.


2018 ◽  
Vol 12 ◽  
pp. 117822341877480 ◽  
Author(s):  
Issam Makhoul ◽  
Mohammad Atiq ◽  
Ahmed Alwbari ◽  
Thomas Kieber-Emmons

The immune system plays a major role in cancer surveillance. Harnessing its power to treat many cancers is now a reality that has led to cures in hopeless situations where no other solutions were available from traditional anticancer drugs. These spectacular achievements rekindled the oncology community’s interest in extending the benefits to all cancers including breast cancer. The first section of this article reviews the biological foundations of the immune response to different subtypes of breast cancer and the ways cancer may overcome the immune attack leading to cancer disease. The second section is dedicated to the actual immune treatments including breast cancer vaccines, checkpoint inhibitors, monoclonal antibodies, and the “unconventional” immune role of chemotherapy.


2013 ◽  
Vol 53 ◽  
pp. 42-51 ◽  
Author(s):  
Alastair Hamilton ◽  
Nicola R. Sibson

2014 ◽  
Author(s):  
Deepak P. Kanojia ◽  
Purva Sarvaiya ◽  
Jian Qiao ◽  
Lingjiao Zhang ◽  
Irina Balyasnikova ◽  
...  

2014 ◽  
Vol 25 ◽  
pp. iv59
Author(s):  
F.F. Pimentel ◽  
E.R. Chagas ◽  
M.G. Tiezzi ◽  
J.M. de Andrade ◽  
D.G. Tiezzi
Keyword(s):  

2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Yunhe Lu ◽  
Lei Chen ◽  
Liangdong Li ◽  
Yiqun Cao

Brain metastasis is a major cause of death in breast cancer patients. The greatest event for brain metastasis is the breaching of the blood-brain barrier (BBB) by cancer cells. The role of exosomes in cancer metastasis is clear, whereas the role of exosomes in the integrity of the BBB is unknown. Here, we established a highly brain metastatic breast cancer cell line by three cycles of in vivo selection. The effect of exosomes on the BBB was evaluated in vitro by tracking, transepithelial/transendothelial electrical resistance (TEER), and permeability assays. BBB-associated exosomal long noncoding RNA (lncRNA) was selected from the GEO dataset and verified by real-time PCR, TEER, permeability, and Transwell assays. The cells obtained by the in vivo selection showed higher brain metastatic capacity in vivo and higher migration and invasion in vitro compared to the parental cells. Exosomes from the highly brain metastatic cells were internalized by brain microvascular endothelial cells (BMECs), which reduced TEER and increased permeability of BBB. The exosomes derived from the highly metastatic cells promoted invasion of the breast cancer cells in the BBB model. lncRNA GS1-600G8.5 was highly expressed in the highly brain metastatic cells and their exosomes, as compared to the samples with reduced metastatic behavior. Silencing of GS1-600G8.5 significantly abrogated the BBB destructive effect of exosomes. GS1-600G8.5-deficient exosomes failed to promote the infiltration of cancer cells through the BBB. Furthermore, BMECs treated with GS1-600G8.5-deprived exosomes expressed higher tight junction proteins than those treated with the control exosomes. These data suggest the exosomes derived from highly brain metastatic breast cancer cells might destroy the BBB system and promote the passage of cancer cells across the BBB, by transferring lncRNA GS1-600G8.5.


Cells ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1568 ◽  
Author(s):  
Min-Hsun Kuo ◽  
Wen-Wei Chang ◽  
Bi-Wen Yeh ◽  
Yeh-Shiu Chu ◽  
Yueh-Chun Lee ◽  
...  

Breast cancer brain metastasis commonly occurs in one-fourth of breast cancer patients and is associated with poor prognosis. Abnormal glucose metabolism is found to promote cancer metastasis. Moreover, the tumor microenvironment is crucial and plays an active role in the metabolic adaptations and survival of cancer cells. Glucose transporters are overexpressed in cancer cells to increase glucose uptake. The glucose transporter 3 (GLUT3) is a high-affinity glucose transporter that is highly expressed in mammalian neurons. GLUT3 is also overexpressed in several malignant brain tumors. However, the role of GLUT3 in breast cancer brain metastasis remains unknown. The results of the present study demonstrated that GLUT3 is highly overexpressed in brain metastatic breast cancers and mediates glucose metabolic reprogramming. Furthermore, knockdown of cAMP-response element binding protein (CREB) could directly regulate GLUT3 expression in brain metastatic breast cancer cells. Notably, we verified and provided a novel role of GLUT3 in mediating glucose metabolism and assisting breast cancer cells to survive in the brain to promote brain metastasis.


Sign in / Sign up

Export Citation Format

Share Document