scholarly journals Glucose Transporter 3 Is Essential for the Survival of Breast Cancer Cells in the Brain

Cells ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1568 ◽  
Author(s):  
Min-Hsun Kuo ◽  
Wen-Wei Chang ◽  
Bi-Wen Yeh ◽  
Yeh-Shiu Chu ◽  
Yueh-Chun Lee ◽  
...  

Breast cancer brain metastasis commonly occurs in one-fourth of breast cancer patients and is associated with poor prognosis. Abnormal glucose metabolism is found to promote cancer metastasis. Moreover, the tumor microenvironment is crucial and plays an active role in the metabolic adaptations and survival of cancer cells. Glucose transporters are overexpressed in cancer cells to increase glucose uptake. The glucose transporter 3 (GLUT3) is a high-affinity glucose transporter that is highly expressed in mammalian neurons. GLUT3 is also overexpressed in several malignant brain tumors. However, the role of GLUT3 in breast cancer brain metastasis remains unknown. The results of the present study demonstrated that GLUT3 is highly overexpressed in brain metastatic breast cancers and mediates glucose metabolic reprogramming. Furthermore, knockdown of cAMP-response element binding protein (CREB) could directly regulate GLUT3 expression in brain metastatic breast cancer cells. Notably, we verified and provided a novel role of GLUT3 in mediating glucose metabolism and assisting breast cancer cells to survive in the brain to promote brain metastasis.

2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Yunhe Lu ◽  
Lei Chen ◽  
Liangdong Li ◽  
Yiqun Cao

Brain metastasis is a major cause of death in breast cancer patients. The greatest event for brain metastasis is the breaching of the blood-brain barrier (BBB) by cancer cells. The role of exosomes in cancer metastasis is clear, whereas the role of exosomes in the integrity of the BBB is unknown. Here, we established a highly brain metastatic breast cancer cell line by three cycles of in vivo selection. The effect of exosomes on the BBB was evaluated in vitro by tracking, transepithelial/transendothelial electrical resistance (TEER), and permeability assays. BBB-associated exosomal long noncoding RNA (lncRNA) was selected from the GEO dataset and verified by real-time PCR, TEER, permeability, and Transwell assays. The cells obtained by the in vivo selection showed higher brain metastatic capacity in vivo and higher migration and invasion in vitro compared to the parental cells. Exosomes from the highly brain metastatic cells were internalized by brain microvascular endothelial cells (BMECs), which reduced TEER and increased permeability of BBB. The exosomes derived from the highly metastatic cells promoted invasion of the breast cancer cells in the BBB model. lncRNA GS1-600G8.5 was highly expressed in the highly brain metastatic cells and their exosomes, as compared to the samples with reduced metastatic behavior. Silencing of GS1-600G8.5 significantly abrogated the BBB destructive effect of exosomes. GS1-600G8.5-deficient exosomes failed to promote the infiltration of cancer cells through the BBB. Furthermore, BMECs treated with GS1-600G8.5-deprived exosomes expressed higher tight junction proteins than those treated with the control exosomes. These data suggest the exosomes derived from highly brain metastatic breast cancer cells might destroy the BBB system and promote the passage of cancer cells across the BBB, by transferring lncRNA GS1-600G8.5.


2020 ◽  
Vol 13 (7) ◽  
pp. 144 ◽  
Author(s):  
Rania Harati ◽  
Mohammad G. Mohammad ◽  
Abdelaziz Tlili ◽  
Raafat A. El-Awady ◽  
Rifat Hamoudi

Brain metastases represent one of the incurable end stages in breast cancer (BC). Developing effective or preventive treatments is hampered by a lack of knowledge on the molecular mechanisms driving brain metastasis. Transmigration of BC cells through the brain endothelium is a key event in the pathogenesis of brain metastasis. In this study, we identified miR-101-3p as a critical micro-RNA able to reduce transmigration of BC cells through the brain endothelium. Our results revealed that miR-101-3p expression is downregulated in brain metastatic BC cells compared to less invasive variants, and varies inversely compared to the brain metastatic propensity of BC cells. Using a loss-and-gain of function approach, we found that miR-101-3p downregulation increased transmigration of BC cells through the brain endothelium in vitro by inducing COX-2 expression in cancer cells, whereas ectopic restoration of miR-101-3p exerted a metastasis-reducing effect. In regulatory experiments, we found that miR-101-3p mediated its effect by modulating COX-2-MMP1 signaling capable of degrading the inter-endothelial junctions (claudin-5 and VE-cadherin), key components of the brain endothelium. These findings suggest that miR-101-3p plays a critical role in the transmigration of breast cancer cells through the brain endothelium by modulating the COX-2-MMP1 signaling and thus may serve as a therapeutic target that can be exploited to prevent or suppress brain metastasis in human breast cancer.


2019 ◽  
Vol 1 (Supplement_1) ◽  
pp. i5-i5
Author(s):  
Route Pedrosa ◽  
Benjamin Schrijver ◽  
Rute B Marques ◽  
Pieter J M Leenen ◽  
Wim A Dik ◽  
...  

Abstract In previous work, we showed the prominence of the T cell response in the formation of brain metastases of primary ER-negative breast cancers. We also showed that prior co-cultured breast cancer cells with stimulated T lymphocytes bear an overexpression of Guanylate-binding protein 1 (GBP1) and possess an increased trespassing ability through an in vitro blood-brain barrier (BBB) model. In addition, we demonstrated a predilection for metastasizing to the brain of breast cancer cells that were co-cultured with activated T cells in a mouse model. In the present work, we show that activated CD8+ cytotoxic T lymphocytes, rather than CD4+ lymphocytes, are the main cause of increasing the ability of breast cancer cells to cross the BBB. While synthetic IFNγ does not change the ability of breast cancer cells to cross the BBB, this study shows that the T lymphocyte-secreted IFNγ activates the STAT1-dependent IFNγ pathway in breast cancer cells, enabling them to cross the in vitro BBB. Direct inhibition of soluble IFNγ or blocking of the IFNγ-specific receptor in breast cancer cells significantly decreases their ability to cross the BBB. The results illustrate that IFNγ signaling pathway is one of the crucial pathways in the formation of brain metastasis of ER- breast cancer. The interference with the IFNγ pathway will develop preventive strategies against the formation of brain metastases of breast cancer.


2019 ◽  
Vol 1 (Supplement_1) ◽  
pp. i3-i3
Author(s):  
Sherona Sirkisoon ◽  
Richard Carpenter ◽  
Tadas Rimkus ◽  
Daniel Doheny ◽  
Dongqin Zhu ◽  
...  

Abstract Breast cancer is the second leading cause of brain metastases in women; patients with breast cancer brain metastasis (BCBM) survive only 6–18 months after diagnosis. Mechanisms for BCBM remain unclear, which contributes to ineffective treatments and dismal prognosis. Truncated glioma-associated oncogene homolog 1 (tGLI1) belongs to the GLI1 family of zinc-finger transcription factors and functions as a tumor-specific gain-of-function mediator of tumor invasion and angiogenesis. Whether tGLI1 plays any role in metastasis of any tumor type remains unknown. Using an experimental metastasis mouse model, via intracardiac implantation, we showed that ectopic expression of tGLI1, but not GLI1, promoted preferential metastasis to brain. Conversely, selective tGLI1 knockdown using tGLI1-specific antisense oligonucleotides led to decreased brain metastasis of intracardially inoculated breast cancer cells. Furthermore, intracranial implantation mouse study revealed tGLI1 enhanced intracranial colonization and growth of breast cancer cells. Immunohistochemical staining of patient samples showed that tGLI1, but not GLI1, was increased in lymph node metastases compared to matched primary tumors, and that tGLI1 was expressed at higher levels in BCBM specimens compared to primary tumors. Whether tGLI1 plays any role in radioresistance is unknown; we found radioresistant BCBM cell lines and patient specimens expressed higher levels of tGLI1 than radiosensitive counterparts, and that tGLI1 promotes radioresistance. Since cancer stem cells (CSCs) are highly metastatic and radioresistant, we examined whether tGLI1 promotes BCBM and radioresistance through activating CSCs. Results showed that tGLI1 transcriptionally activates stemness genes CD44, Nanog, Sox2, and OCT4, leading to stem cell activation. Furthermore, we observed that tGLI1-positive CSCs strongly activated and interacted with astrocytes, the most abundant brain tumor microenvironmental cells known to promote tumor growth, in vitro and in vivo. Collectively, our findings establish a novel role of that tGLI1 plays in promoting breast cancer preferential metastasis to brain, radioresistance, and astrocytes in the metastatic niche.


2017 ◽  
Vol 233 (1) ◽  
pp. 559-571 ◽  
Author(s):  
Manish Tandon ◽  
Ahmad H. Othman ◽  
Vivek Ashok ◽  
Gary S. Stein ◽  
Jitesh Pratap

2021 ◽  
Vol 22 (4) ◽  
pp. 1557
Author(s):  
Elif Damla Arisan ◽  
Ozge Rencuzogullari ◽  
Clara Cieza-Borrella ◽  
Francesc Miralles Arenas ◽  
Miriam Dwek ◽  
...  

Breast cancer (BCa) is one of the leading health problems among women. Although significant achievements have led to advanced therapeutic success with targeted therapy options, more efforts are required for different subtypes of tumors and according to genomic, transcriptomic, and proteomic alterations. This study underlines the role of microRNA-21 (miR-21) in metastatic MDA-MB-231 breast cancer cells. Following the knockout of miR-21 from MDA-MB-231 cells, which have the highest miR-21 expression levels compared to MCF-7 and SK-BR-3 BCa cells, a decrease in epithelial-mesenchymal transition (EMT) via downregulation of mesenchymal markers was observed. Wnt-11 was a critical target for miR-21, and the Wnt-11 related signaling axis was altered in the stable miR-21 knockout cells. miR-21 expression was associated with a significant increase in mesenchymal markers in MDA-MB-231 BCa cells. Furthermore, the release of extracellular vesicles (EVs) was significantly reduced in the miR-21 KO cells, alongside a significant reduction in relative miR-21 export in EV cargo, compared with control cells. We conclude that miR-21 is a leading factor involved in mesenchymal transition in MDA-MB-231 BCa. Future therapeutic strategies could focus on its role in the treatment of metastatic breast cancer.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi198-vi199
Author(s):  
Mao Li ◽  
Markus Schweiger ◽  
Daniel Ryan ◽  
Ichiro Nakano ◽  
Litia Carvalho ◽  
...  

Abstract Olfactory receptors (ORs), responsible for the sense of smell, play an essential role in various physiological processes outside the nasal epithelium, including cancer. In breast cancer, however, the expression and function of ORs remain understudied. We established a breast cancer metastasis model by intracardiac injection of MDA-MB-231 (231P) in immunocompromised mice and produced a series of derivative cell lines from developed metastatic sites, including the brain-seeking clone (231Br). We examined the significance of ORs transcript abundance in primary and metastatic breast cancer to different tissues, including the brain, bone, and lung. While 20 OR transcripts were differentially expressed in distant metastases, OR5B21 displayed high expression in all three metastatic sites with respect to the primary tumor, especially in brain metastasis with 13 fold higher than the primary site. Metastatic clones showed distinguishing higher invasion biological characteristics compared to parental cells in vivo and in vitro. Knockdown of OR5B21 significantly decreased the invasion and migration of MDA-MB-231 Brain-seeking metastatic cell as well as metastasis to different organs, including the brain, while overexpression of OR5B21 had the opposite effect. Mechanistically, OR5B21 expression was associated with epithelial to mesenchymal transition through the STAT3/NFkB/CEBPβ signaling pathway. We propose OR5B21 (and potentially other ORs) as a novel oncogene contributing to breast cancer brain metastasis and a potential target for adjuvant therapy.


Sign in / Sign up

Export Citation Format

Share Document