scholarly journals Unprecedented and highly stable lithium storage capacity of (001) faceted nanosheet-constructed hierarchically porous TiO2/rGO hybrid architecture for high-performance Li-ion batteries

2020 ◽  
Vol 7 (6) ◽  
pp. 1046-1058 ◽  
Author(s):  
Wen-Bei Yu ◽  
Zhi-Yi Hu ◽  
Jun Jin ◽  
Min Yi ◽  
Min Yan ◽  
...  

Abstract Active crystal facets can generate special properties for various applications. Herein, we report a (001) faceted nanosheet-constructed hierarchically porous TiO2/rGO hybrid architecture with unprecedented and highly stable lithium storage performance. Density functional theory calculations show that the (001) faceted TiO2 nanosheets enable enhanced reaction kinetics by reinforcing their contact with the electrolyte and shortening the path length of Li+ diffusion and insertion-extraction. The reduced graphene oxide (rGO) nanosheets in this TiO2/rGO hybrid largely improve charge transport, while the porous hierarchy at different length scales favors continuous electrolyte permeation and accommodates volume change. This hierarchically porous TiO2/rGO hybrid anode material demonstrates an excellent reversible capacity of 250 mAh g–1 at 1 C (1 C = 335 mA g–1) at a voltage window of 1.0–3.0 V. Even after 1000 cycles at 5 C and 500 cycles at 10 C, the anode retains exceptional and stable capacities of 176 and 160 mAh g–1, respectively. Moreover, the formed Li2Ti2O4 nanodots facilitate reversed Li+ insertion-extraction during the cycling process. The above results indicate the best performance of TiO2-based materials as anodes for lithium-ion batteries reported in the literature.

Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 695 ◽  
Author(s):  
Yijun Liu ◽  
Ying He ◽  
Elif Vargun ◽  
Tomas Plachy ◽  
Petr Saha ◽  
...  

To improve Li storage capacity and the structural stability of Ti3C2 MXene-based electrode materials for lithium-ion batteries (LIBs), a facile strategy is developed to construct three-dimensional (3D) hierarchical porous Ti3C2/bimetal-organic framework (NiCo-MOF) nanoarchitectures as anodes for high-performance LIBs. 2D Ti3C2 nanosheets are coupled with NiCo-MOF nanoflakes induced by hydrogen bonds to form 3D Ti3C2/NiCo-MOF composite films through vacuum-assisted filtration technology. The morphology and electrochemical properties of Ti3C2/NiCo-MOF are influenced by the mass ratio of MOF to Ti3C2. Owing to the interconnected porous structures with a high specific surface area, rapid charge transfer process, and Li+ diffusion rate, the Ti3C2/NiCo-MOF-0.4 electrode delivers a high reversible capacity of 402 mAh g−1 at 0.1 A g−1 after 300 cycles; excellent rate performance (256 mAh g−1 at 1 A g−1); and long-term stability with a capacity retention of 85.7% even after 400 cycles at a high current density, much higher than pristine Ti3C2 MXene. The results highlight that Ti3C2/NiCo-MOF have great potential in the development of high-performance energy storage devices.


2015 ◽  
Vol 3 (9) ◽  
pp. 5054-5059 ◽  
Author(s):  
Chang Yu ◽  
Meng Chen ◽  
Xiaoju Li ◽  
Changtai Zhao ◽  
Lianlong He ◽  
...  

Hierarchically porous carbon architectures composed of a micro-sized porous carbon sphere matrix embedded with hollow nanocapsules are configured, demonstrating a large capacity and an ultra-high rate capability in lithium ion batteries.


2013 ◽  
Vol 709 ◽  
pp. 157-160 ◽  
Author(s):  
Xiao Yi Zhu ◽  
Jian Jiang Li ◽  
Xi Lin She ◽  
Lin Hua Xia

A facile hydrothermal route has been developed to prepare MnO2/graphene nanocomposites and MnO2 nanoparticles are uniformly anchored on graphene nanosheets. The composite were studied as the anode material for lithium-ion batteries. The surface of graphene is modified by MnO2 nanoparticles which are 10-30 nm in size and homogeneously anchor on graphene sheets. The composite exhibits superior lithium battery performance with higher reversible capacity and better cycling performance. The reversible capacity is up to 781.5 mAh g-1 at a current of 100 mA g-1 and maintains 96% after 50 cycles. The enhanced lithium storage performance is due to the synergetic effect of graphene and MnO2.


2018 ◽  
Vol 54 (81) ◽  
pp. 11483-11486 ◽  
Author(s):  
Jassiel R. Rodriguez ◽  
Carlos Belman-Rodriguez ◽  
Sergio A. Aguila ◽  
Yanning Zhang ◽  
Hongxian Liu ◽  
...  

Cubic Bi4Ge3O12 lithiation-host electrode material with micron size, low surface area (3 m2 g−1) and high tap density yielded a reversible capacity of 586 mA h g−1 at a current density of 200 mA g−1 after 500 charge–discharge cycles. Density functional theory calculations detected distorted [BiO6]9− octahedra with two types of Bi–O bonds.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1115
Author(s):  
Ying Xie ◽  
Xiang Xiong ◽  
Kai Han

Ammonium molybdate tetrahydrate ((NH4)6Mo7O24) (AMT) is commonly used as the precursor to synthesize Mo-based oxides or sulfides for lithium ion batteries (LIBs). However, the electrochemical lithium storage ability of AMT itself is unclear so far. In the present work, AMT is directly examined as a promising anode material for Li-ion batteries with good capacity and cycling stability. To further improve the electrochemical performance of AMT, AMT/polydopamine (PDA) composite was simply synthesized via recrystallization and freeze drying methods. Unlike with block shape for AMT, the as-prepared AMT/PDA composite shows flake morphology. The initial discharge capacity of AMT/PDA is reached up to 1471 mAh g−1. It delivers a reversible discharge capacity of 702 mAh g−1 at a current density of 300 mA g−1, and a stable reversible capacity of 383.6 mA h g−1 is retained at a current density of 0.5 A g−1 after 400 cycles. Moreover, the lithium storage mechanism is fully investigated. The results of this work could potentially expand the application of AMT and Mo-based anode for LIBs.


2016 ◽  
Vol 4 (28) ◽  
pp. 10906-10913 ◽  
Author(s):  
Yungang Zhou

In this work, via density functional theory calculations, we explored the interaction of Li with recently synthesized two-dimensional structures, MX (M = Ge, Sn; X = S, Se) sheets, for application in high-performance lithium ion batteries.


2021 ◽  
Vol 2076 (1) ◽  
pp. 012070
Author(s):  
Dong Zeng ◽  
Kai Qi ◽  
Yubing Qiu

Abstract Hybridization with transition metal oxide is broadly realized as an attractive way to smash the capacity limitation of carbon-base materials upon lithium storage. However, the influence of metal ions on the fast reaction kinetics of the electrode is still a confusing topic. Herein, a common molten salt method is displayed to fabricate hierarchically porous MnO/carbon composites. The addition of LiCl and KCl induces the fluid reaction substance by forming molten salt at a high-temperatures to beneficially achieve the activation and breaking of the carbon particles. The abundant porous and homogeneou carbon skeletons validly raise the ion/electron diffusion and transferability to prevent MnO particles from agglomerating, thereby inducing the diffusion kinetic. Moreover, the hierarchical porous MnO/carbon composite offers a highly invertible capacity of 851 mAh g-1 at 0.1 A g-1 and outstanding cyclic performance. This work has opened up a path for metal oxidation/carbon composite materials in electrochemical energy storage.


Nanophotonics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1741-1751
Author(s):  
Young In Jhon ◽  
Jinho Lee ◽  
Young Min Jhon ◽  
Ju Han Lee

Abstract Metallic 2D materials can be promising saturable absorbers for ultrashort pulsed laser production in the long wavelength regime. However, preparing and manipulating their 2D structures without layer stacking have been nontrivial. Using a combined experimental and theoretical approach, we demonstrate here that a metallic titanium carbide (Ti3C2Tx), the most popular MXene 2D material, can have excellent nonlinear saturable absorption properties even in a highly stacked state due to its intrinsically existing surface termination, and thus can produce mode-locked femtosecond pulsed lasers in the 1.9-μm infrared range. Density functional theory calculations reveal that the electronic and optical properties of Ti3C2Tx MXene can be well preserved against significant layer stacking. Indeed, it is experimentally shown that 1.914-μm femtosecond pulsed lasers with a duration of 897 fs are readily generated within a fiber cavity using hundreds-of-layer stacked Ti3C2Tx MXene saturable absorbers, not only being much easier to manufacture than mono- or few-layered ones, but also offering character-conserved tightly-assembled 2D materials for advanced performance. This work strongly suggests that as-obtained highly stacked Ti3C2Tx MXenes can serve as superb material platforms for versatile nanophotonic applications, paving the way toward cost-effective, high-performance photonic devices based on MXenes.


Sign in / Sign up

Export Citation Format

Share Document