GIS and Archaeology

Anthropology ◽  
2021 ◽  

Geographic (sometimes geographical or spatial) information systems (GIS) refer to hardware, software, and practices relating to the collection, management, and analysis of geospatial data. A large body of literature exists regarding archaeological GIS due to the discipline’s relatively early adoption in the 1980s. Archaeological uses of GIS relate to interests regarding the interdependence among geographic space, human culture, and various natural phenomena. GIS provides new forms of analyses that are either too difficult or even impossible without the aid of computers. Archaeologists’ interest in theoretical topics associated with interpretation and methodology continues to animate considerable discussion bringing archaeological GIS closer to GIScience, which moves beyond technical instruction to engage deeper conceptual aspects. Many of these aspects relate to particularly sections in this article. Early archaeological GIS interests focus on topics such as inventory, mapping inter- and intra-site distributions, and the prediction of new site locations. Today, archaeological GIS continues to explore these and emerging topics, such as the use of GIS to manage and interpret remotely sensed, visualization, and information science. The application of GIS remains one of the fastest growing areas of disciplinary specialization for archaeology and is central to cultural resources management work around the world. This bibliography groups archaeological GIS on the basis of use. This includes categories such as inventory, geospatial analyses, data visualization (e.g., mapmaking), and so forth. Some sections include subsections, as in the case of geospatial analysis where the literature continues to rapidly expand. Sources are placed into the most relevant section based on focus or best fit in relation to the overall literature on archaeological GIS.

Author(s):  
Rafael Sanzio Araújo dos Anjos ◽  
Jose Leandro de Araujo Conceição ◽  
Jõao Emanuel ◽  
Matheus Nunes

The spatial information regarding the use of territory is one of the many strategies used to answer and to inform about what happened, what is happening and what may happen in geographic space. Therefore, the mapping of land use as a communication tool for the spatial data made significant progress in improving sources of information, especially over the last few decades, with new generation remote sensing products for data manipulation.


2001 ◽  
Author(s):  
Suzanne F. Loechl ◽  
Manroop Chawla ◽  
Bethanie C. Grashof ◽  
Marcus Griffin ◽  
Adam Smith

1997 ◽  
Vol 06 (04) ◽  
pp. 423-450 ◽  
Author(s):  
Baher A. El-Geresy ◽  
Alia I. Abdelmoty

In this paper we propose a general approach for reasoning in space. The approach is composed of a set of two general constraints to govern the spatial relationships between objects in space, and two rules to propagate relationships between those objects. The approach is based on a novel representation of the topology of the space as a connected set of components using a structure called adjacency matrix which can capture the topology of objects of different complexity in any space dimension. The formalism is used to explain spatial compositions resulting in indefinite and definite relations and it is shown to be applicable to reasoning in the temporal domain. The main contribution of the formalism is that it provides means for constructing composition tables for objects with arbitrary complexity in any space dimension. A new composition table between spatial objects of different types is presented. A major advantage of the method is that reasoning between objects of any complexity can be achieved in a defined limited number of steps. Hence, the incorporation of spatial reasoning mechanisms in spatial information systems becomes possible.


2021 ◽  
Vol 13 (7) ◽  
pp. 1237
Author(s):  
Nikos Papadopoulos

Geophysical prospecting methods have been extensively used to outline buried antiquities in terrestrial sites. Despite the frequent application of these mapping and imaging approaches for the detection of archaeological relics in deep-water marine environments (e.g., shipwrecks), the aforementioned processes have minimal contribution when it comes to understanding the dynamics of the past in coastal and shallow aquatic archaeological sites. This work explores the possibilities of multicomponent geophysical techniques in revealing antiquities that have been submerged in diverse shallow coastal marine environments in the eastern Mediterranean. A group of four sites in Greece (Agioi Theodoroi, Olous, Lambayanna) and Cyprus (Pafos) spanning from prehistory to Roman times were chosen as test sites to validate the efficiency of electrical resistivity tomography, magnetic gradiometry, and ground penetrating radar methods. The comprehensive analysis of the geophysical data completed the picture for the hidden archeological elements in all the sites. The results manifest the significance and the potential of these methods for documenting and understanding the complex archaeological sites encountered in the Mediterranean. In view of climate change and the risks related to future sea level rise and erosion of low-level coastal areas, the results of this work could be integrated in a strategic framework to develop an effective interdisciplinary research model that can be applied to similar shallow water archaeological surveys, thus substantially contributing towards cultural resources management.


2019 ◽  
Vol 1 ◽  
pp. 1-2
Author(s):  
Hideki Kaji ◽  
Ken’Ichi Tsuruoka ◽  
Ruochen Si ◽  
Min Lu ◽  
Masatoshi Arikawa ◽  
...  

<p><strong>Abstract.</strong> The Kashiwa Library (KL), The University of Tokyo, holds a collection of old paper maps over the world, about a half of which were originally collected for the International Map Exhibition 1980 in Tokyo. The collection has 3,200 maps published in the 1970s and 1980s, and 1,260 of them were displayed at the exhibition. The map collection is important because it represents the cartography at the emerging era of new technologies and techniques such as satellite remote sensing, computers and GIS for map production (Arikawa et al., 2016). These maps were donated from the Japan Cartographers Association in March 2016, after their collection and storage by the association since the exhibition. In the Japanese fiscal year 2017, the Center for Spatial Information Science (CSIS), The University of Tokyo, and KL started a cooperative research project to produce a digital archive of this map collection, with support from the University of Tokyo Academic Archives Project that facilitates digital archiving of academic materials owned by various units at the university. This presentation explains the procedure of making our digital archive “Kashiwanoha Paper Maps Digital Archive”. “Kashiwanoha” is the address of the Kashiwa Campus of The University of Tokyo where KL and CSIS are located, and it literally means “oak leaf”.</p>


Author(s):  
S. Zlatanova ◽  
S. Dragicevic ◽  
G. Sithole

Abstract. The unusual circumstances created by the coronavirus pandemic has impacted recent activities of Commission IV. The situation also provides an excellent opportunity to connect the work of the Commission to addressing an important global problem. Managing the social and economic challenges brought by increased complexity and interconnectivity of activities in human society requires new dimensions of analysing information and specifically spatial information. The increased pressure on the usage of geographic space, maintaining sustainable development and creating liveable community environments increases the requirements for spatial decision-making tools. Commission IV Spatial Information Science (2016–2020) is dedicated to advance research activities in spatial information sciences for modelling, structuring, management, analysis, visualization and simulation of (big) data with focus on the third spatial dimension and taking into consideration dynamic changes. Special attention is given to linking information about real-world physical phenomena with societal, organizational and legal information in order to address the complexity of issues in their entirety. The Commission has contributed to advancements in data modelling, data fusion and management, visualization (web-based, VR and AR), simulation and city analytics, and 3D applications. The work had largely been implemented in cooperation with international organizations such as FIG, UDMS, 3DGeoinfo, ICA, OGC, ISO and Web3D.The Commission consists of 10 scientific areas of research that is coordinated by 10 working groups (WG) as follows - WG1: Strengthen the work on multidimensional spatial model and representations towards seamless data fusion; WG2: Advance the semantic modelling, development and linking of ontologies; WG3: Intensify research into data interpretation, quality and uncertainty modelling; WG4: Strengthen research on crowdsourced data and public participation, towards community-driven and participatory applications, collaborative mapping and use/usability of maps; WG5: Strengthen research on seamless indoor/outdoor location-based services, navigation and tracking, and analysis of human movement; WG6: Advance interoperable Internet of Things, Sensor web, SDI and linked data; WG7: Advance research on spatial data types, indexing methods and analysis to further contribute to development of spatial DBMS for management and analysis of multi-dimensional data; WG8: Encourage the use of functional programming and streaming algorithms in development of demos and applications as well as parallel and distributed processing paradigms; WG9: Advance visual analytics, online multi-dimensional visualization on mobile and desktop devices, considering human-centred applications, privacy and security issues; WG10: Advance knowledge on the use of spatial information (BIM/GIS) for urban modelling; ICWG IV/III: Global Mapping: Updating, Verification and Interoperability with the mission to promote the development of advanced methodologies and applications for the update, verification and interoperability of geospatial databases.The papers received for the ISPRS congress reflect the above-mentioned scientific research areas. The reported research ranges from advancements in new and emerging theories, through experiments and analysis to demonstration of technologies in different applications. The research was captured through papers and abstracts published in the collection of ISPRS Annals and ISPRS Archives. The papers and abstracts were selected for inclusion through a rigorous peer-review process. The ISPRS Annals contain 29 papers and the ISPRS Archives contain 114 papers. The diversity of the research topics presented in the published papers clearly indicate the wide range of topics within the field of Spatial Information Science. A rigorous peer-review process by the ISPRS TC IV Scientific Committee Working Group Chairs ensured hight quality and scientific innovation.


1990 ◽  
Vol 55 (1) ◽  
pp. 199-200 ◽  
Author(s):  
Janet S. Pollak

Sign in / Sign up

Export Citation Format

Share Document