Learning Maps to Navigate Space

Author(s):  
Stephen Grossberg

This chapter explains how humans and other animals learn to learn to navigate in space. Both reaching and route-based navigation use difference vector computations. Route navigation learns a labeled graph of angles and distances moved. Spatial navigation requires neurons to learn navigable spaces that can be many meters in size. This is again accomplished by a spectrum of cells. Such spectral spacing supports learning of medial entorhinal grid cells and hippocampal place cells. The model responds to realistic rat navigational trajectories by learning grid cells with hexagonal grid firing fields of multiple spatial scales, and place cells with one or more firing fields, that match neurophysiological data about their development in juvenile rats. Both grid and place cells develop in a hierarchy of self-organizing maps by detecting, learning and remembering the most frequent and energetic co-occurrences of their inputs. Model parsimonious properties include: similar ring attractor mechanisms process linear and angular path integration inputs that drive map learning; the same self-organizing map mechanisms can learn both grid cell and place cell receptive fields; and the learning of the dorsoventral organization of multiple grid cell modules through medial entorhinal cortex to hippocampus uses a gradient of rates that is homologous to a rate gradient that drives adaptively timed learning at multiple rates through lateral entorhinal cortex to hippocampus (‘neural relativity’). The model clarifies how top-down hippocampal-to-entorhinal ART attentional mechanisms stabilize map learning, simulates how hippocampal, septal, or acetylcholine inactivation disrupts grid cells, and explains data about theta, beta and gamma oscillations.

2014 ◽  
Vol 369 (1635) ◽  
pp. 20120524 ◽  
Author(s):  
Stephen Grossberg ◽  
Praveen K. Pilly

A neural model proposes how entorhinal grid cells and hippocampal place cells may develop as spatial categories in a hierarchy of self-organizing maps (SOMs). The model responds to realistic rat navigational trajectories by learning both grid cells with hexagonal grid firing fields of multiple spatial scales, and place cells with one or more firing fields, that match neurophysiological data about their development in juvenile rats. Both grid and place cells can develop by detecting, learning and remembering the most frequent and energetic co-occurrences of their inputs. The model's parsimonious properties include: similar ring attractor mechanisms process linear and angular path integration inputs that drive map learning; the same SOM mechanisms can learn grid cell and place cell receptive fields; and the learning of the dorsoventral organization of multiple spatial scale modules through medial entorhinal cortex to hippocampus (HC) may use mechanisms homologous to those for temporal learning through lateral entorhinal cortex to HC (‘neural relativity’). The model clarifies how top-down HC-to-entorhinal attentional mechanisms may stabilize map learning, simulates how hippocampal inactivation may disrupt grid cells, and explains data about theta, beta and gamma oscillations. The article also compares the three main types of grid cell models in the light of recent data.


2012 ◽  
Vol 24 (5) ◽  
pp. 1031-1054 ◽  
Author(s):  
Praveen K. Pilly ◽  
Stephen Grossberg

Spatial learning and memory are important for navigation and formation of episodic memories. The hippocampus and medial entorhinal cortex (MEC) are key brain areas for spatial learning and memory. Place cells in hippocampus fire whenever an animal is located in a specific region in the environment. Grid cells in the superficial layers of MEC provide inputs to place cells and exhibit remarkable regular hexagonal spatial firing patterns. They also exhibit a gradient of spatial scales along the dorsoventral axis of the MEC, with neighboring cells at a given dorsoventral location having different spatial phases. A neural model shows how a hierarchy of self-organizing maps, each obeying the same laws, responds to realistic rat trajectories by learning grid cells with hexagonal grid firing fields of multiple spatial scales and place cells with unimodal firing fields that fit neurophysiological data about their development in juvenile rats. The hippocampal place fields represent much larger spaces than the grid cells to support navigational behaviors. Both the entorhinal and hippocampal self-organizing maps amplify and learn to categorize the most energetic and frequent co-occurrences of their inputs. Top–down attentional mechanisms from hippocampus to MEC help to dynamically stabilize these spatial memories in both the model and neurophysiological data. Spatial learning through MEC to hippocampus occurs in parallel with temporal learning through lateral entorhinal cortex to hippocampus. These homologous spatial and temporal representations illustrate a kind of “neural relativity” that may provide a substrate for episodic learning and memory.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Haggai Agmon ◽  
Yoram Burak

The representation of position in the mammalian brain is distributed across multiple neural populations. Grid cell modules in the medial entorhinal cortex (MEC) express activity patterns that span a low-dimensional manifold which remains stable across different environments. In contrast, the activity patterns of hippocampal place cells span distinct low-dimensional manifolds in different environments. It is unknown how these multiple representations of position are coordinated. Here, we develop a theory of joint attractor dynamics in the hippocampus and the MEC. We show that the system exhibits a coordinated, joint representation of position across multiple environments, consistent with global remapping in place cells and grid cells. In addition, our model accounts for recent experimental observations that lack a mechanistic explanation: variability in the firing rate of single grid cells across firing fields, and artificial remapping of place cells under depolarization, but not under hyperpolarization, of layer II stellate cells of the MEC.


2020 ◽  
Author(s):  
Haggai Agmon ◽  
Yoram Burak

ABSTRACTThe representation of position in the brain is distributed across multiple neural populations. Grid cell modules in the medial entorhinal cortex (MEC) express activity patterns that span a low-dimensional manifold which remains stable across different environments. In contrast, the activity patterns of hippocampal place cells span distinct low-dimensional manifolds in different environments. It is unknown how these multiple representations of position are coordinated. Here we develop a theory of joint attractor dynamics in the hippocampus and the MEC. We show that the system exhibits a coordinated, joint representation of position across multiple environments, consistent with global remapping in place cells and grid cells. We then show that our model accounts for recent experimental observations that lack a mechanistic explanation: variability in the firing rate of single grid cells across firing fields, and artificial remapping of place cells under depolarization, but not under hyperpolarization, of layer II stellate cells of the MEC.


2019 ◽  
Author(s):  
Heechul Jun ◽  
Shogo Soma ◽  
Takashi Saito ◽  
Takaomi C Saido ◽  
Kei M Igarashi

AbstractPatients with Alzheimer’s disease (AD) frequently suffer from spatial memory impairment and wandering behavior, but brain circuits causing such symptoms remain largely unclear. In healthy brains, spatially-tuned hippocampal place cells and entorhinal grid cells represent distinct spike patterns in different environments, a circuit function called “remapping” that underlies pattern separation of spatial memory. We investigated whether knock-in expression of mutated amyloid precursor protein deteriorates the remapping of place cells and grid cells. We found that the remapping of CA1 place cells was disrupted although their spatial tuning was only mildly diminished. Grid cells in the medial entorhinal cortex (MEC) were impaired, sending severely disrupted remapping signals to the hippocampus. Furthermore, fast gamma oscillations were disrupted in both CA1 and MEC, resulting in impaired fast gamma coupling in the MEC→CA1 circuit. These results point to the link between grid cell impairment and remapping disruption as a circuit mechanism causing spatial memory impairment in AD.


1995 ◽  
Vol 34 (35) ◽  
pp. 8167 ◽  
Author(s):  
K. Heggarty ◽  
J. Duvillier ◽  
E. Carpio Pérez ◽  
J. L. de Bougrenet de la Tocnaye

Sign in / Sign up

Export Citation Format

Share Document