Communication

2021 ◽  
pp. 223-260
Author(s):  
Jochen Rau

This chapter introduces the notions of classical and quantum information and discusses simple protocols for their exchange. It defines the entropy as a quantitative measure of information, and investigates its mathematical properties and operational meaning. It discusses the extent to which classical information can be carried by a quantum system and derives a pertinent upper bound, the Holevo bound. One important application of quantum communication is the secure distribution of cryptographic keys; a pertinent protocol, the BB84 protocol, is discussed in detail. Moreover, the chapter explains two protocols where previously shared entanglement plays a key role, superdense coding and teleportation. These are employed to effectively double the classical information carrying capacity of a qubit, or to transmit a quantum state with classical bits, respectively. It is shown that both protocols are optimal.

2019 ◽  
Vol 26 (04) ◽  
pp. 1950023
Author(s):  
Salvatore Lorenzo ◽  
Mauro Paternostro ◽  
G. Massimo Palma

Quantum non-Markovianity and quantum Darwinism are two phenomena linked by a common theme: the flux of quantum information between a quantum system and the quantum environment it interacts with. In this work, making use of a quantum collision model, a formalism initiated by Sudarshan and his school, we will analyse the efficiency with which the information about a single qubit gained by a quantum harmonic oscillator, acting as a meter, is transferred to a bosonic environment. We will show how, in some regimes, such quantum information flux is inefficient, leading to the simultaneous emergence of non-Markovian and non-darwinistic behaviours.


2018 ◽  
Vol 18 (13&14) ◽  
pp. 1125-1142
Author(s):  
Arpita Maitra ◽  
Bibhas Adhikari ◽  
Satyabrata Adhikari

Recently, dimensionality testing of a quantum state has received extensive attention (Ac{\'i}n et al. Phys. Rev. Letts. 2006, Scarani et al. Phys. Rev. Letts. 2006). Security proofs of existing quantum information processing protocols rely on the assumption about the dimension of quantum states in which logical bits are encoded. However, removing such assumption may cause security loophole. In the present paper, we show that this is indeed the case. We choose two players' quantum private query protocol by Yang et al. (Quant. Inf. Process. 2014) as an example and show how one player can gain an unfair advantage by changing the dimension of subsystem of a shared quantum system. To resist such attack we propose dimensionality testing in a different way. Our proposal is based on CHSH like game. As we exploit CHSH like game, it can be used to test if the states are product states for which the protocol becomes completely vulnerable.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yao-Hsin Chou ◽  
Guo-Jyun Zeng ◽  
Xing-Yu Chen ◽  
Shu-Yu Kuo

AbstractSecret sharing is a widely-used security protocol and cryptographic primitive in which all people cooperate to restore encrypted information. The characteristics of a quantum field guarantee the security of information; therefore, many researchers are interested in quantum cryptography and quantum secret sharing (QSS) is an important research topic. However, most traditional QSS methods are complex and difficult to implement. In addition, most traditional QSS schemes share classical information, not quantum information which makes them inefficient to transfer and share information. In a weighted threshold QSS method, each participant has each own weight, but assigning weights usually costs multiple quantum states. Quantum state consumption will therefore increase with the weight. It is inefficient and difficult, and therefore not able to successfully build a suitable agreement. The proposed method is the first attempt to build multiparty weighted threshold QSS method using single quantum particles combine with the Chinese remainder theorem (CRT) and phase shift operation. The proposed scheme allows each participant has its own weight and the dealer can encode a quantum state with the phase shift operation. The dividing and recovery characteristics of CRT offer a simple approach to distribute partial keys. The reversibility of phase shift operation can encode and decode the secret. The proposed weighted threshold QSS scheme presents the security analysis of external attacks and internal attacks. Furthermore, the efficiency analysis shows that our method is more efficient, flexible, and simpler to implement than traditional methods.


2002 ◽  
Vol 2 (1) ◽  
pp. 1-13
Author(s):  
S.J. van Enk ◽  
H.J. Kimble

Control fields in quantum information processing are almost by definition assumed to be classical. In reality, however, when such a field is used to manipulate the quantum state of qubits, the qubits always become slightly entangled with the field. For quantum information processing this is an undesirable property, as it precludes perfect quantum computing and quantum communication. Here we consider the interaction of atomic qubits with laser fields and quantify atom-field entanglement in various cases of interest. We find that the entanglement decreases with the average number of photons \bar{n} in a laser beam as $E\propto\log_2 \bar{n}/\bar{n}$ for $\bar{n}\rightarrow\infty$.


Author(s):  
Y. Yugra ◽  
F. De Zela

Coherence and quantum correlations have been identified as fundamental resources for quantum information tasks. As recently shown, these resources can be interconverted. In multipartite systems, entanglement represents a prominent case among quantum correlations, one which can be activated from coherence. All this makes coherence a key resource for securing the operational advantage of quantum technologies. When dealing with open systems, decoherence hinders full exploitation of quantum resources. Here, we present a protocol that allows reaching the maximal achievable amount of coherence in an open quantum system. By implementing our protocol, or suitable variants of it, coherence losses might be fully compensated, thereby leading to coherence revivals. We provide an experimental proof of principle of our protocol through its implementation with an all-optical setup.


2001 ◽  
Vol 15 (27) ◽  
pp. 1259-1264 ◽  
Author(s):  
M. ANDRECUT ◽  
M. K. ALI

The preparation of a quantum register in an arbitrary superposed quantum state is an important operation for quantum computation and quantum information processing. Here, we present an efficient algorithm which requires a polynomial number of elementary operations for initializing the amplitude distribution of a quantum register.


Author(s):  
Zhiming Huang ◽  
Zhenbang Rong ◽  
Yiyong Ye

We study the quantum teleportation under fluctuating electromagnetic field in the presence of a perfectly reflecting boundary. The noisy scheme of quantum teleportation affected by electromagnetic fluctuation is proposed. Then we calculate and investigate the behaviors of entanglement and fidelity, which are closely related to the plane boundary and atomic polarization. After a period of evolution, entanglement and fidelity evolve to zero and nonzero stable value respectively. Fidelity is closely related to the weight parameter and phase parameter of the teleported state. Besides, small two-atom separation makes entanglement and fidelity have better enhancement. Furthermore, the presence of boundary, atomic polarization and two-atom separation offers us more freedom to adjust the performance of the quantum teleportation. The results would give us new insight into quantum communication in an open quantum system since quantum teleportation plays an important role in quantum communication and quantum information.


Sign in / Sign up

Export Citation Format

Share Document