Climate: A Chain of Identical Reservoirs

Author(s):  
James C. G. Walker

One class of important problems involves diffusion in a single spatial dimension, for example, height profiles of reactive constituents in a turbulently mixing atmosphere, profiles of concentration as a function of depth in the ocean or other body of water, diffusion and diagenesis within sediments, and calculation of temperatures as a function of depth or position in a variety of media. The one-dimensional diffusion problem typically yields a chain of interacting reservoirs that exchange the species of interest only with the immediately adjacent reservoirs. In the mathematical formulation of the problem, each differential equation is coupled only to adjacent differential equations and not to more distant ones. Substantial economies of computation can therefore be achieved, making it possible to deal with a larger number of reservoirs and corresponding differential equations. In this chapter I shall explain how to solve a one-dimensional diffusion problem efficiently, performing only the necessary calculations. The example I shall use is the calculation of the zonally averaged temperature of the surface of the Earth (that is, the temperature averaged over all longitudes as a function of latitude). I first present an energy balance climate model that calculates zonally averaged temperatures as a function of latitude in terms of the absorption of solar energy, which is a function of latitude, the emission of long-wave planetary radiation to space, which is a function of temperature, and the transport of heat from one latitude to another. This heat transport is represented as a diffusive process, dependent on the temperature gradient or the difference between temperatures in adjacent latitude bands. I use the energy balance climate model first to calculate annual average temperature as a function of latitude, comparing the calculated results with observed values and tuning the simulation by adjusting the diffusion parameter that describes the transport of energy between latitudes. I then show that most of the elements of the sleq array for this problem are zero. Nonzero elements are present only on the diagonal and immediately adjacent to the diagonal. The array has this property because each differential equation for temperature in a latitude band is coupled only to temperatures in the adjacent latitude bands.

2019 ◽  
Vol 67 (6) ◽  
pp. 483-492
Author(s):  
Seonghyeon Baek ◽  
Iljae Lee

The effects of leakage and blockage on the acoustic performance of particle filters have been examined by using one-dimensional acoustic analysis and experimental methods. First, the transfer matrix of a filter system connected to inlet and outlet pipes with conical sections is measured using a two-load method. Then, the transfer matrix of a particle filter only is extracted from the experiments by applying inverse matrices of the conical sections. In the analytical approaches, the one-dimensional acoustic model for the leakage between the filter and the housing is developed. The predicted transmission loss shows a good agreement with the experimental results. Compared to the baseline, the leakage between the filter and housing increases transmission loss at a certain frequency and its harmonics. In addition, the transmission loss for the system with a partially blocked filter is measured. The blockage of the filter also increases the transmission loss at higher frequencies. For the simplicity of experiments to identify the leakage and blockage, the reflection coefficients at the inlet of the filter system have been measured using two different downstream conditions: open pipe and highly absorptive terminations. The experiments show that with highly absorptive terminations, it is easier to see the difference between the baseline and the defects.


1878 ◽  
Vol 28 (2) ◽  
pp. 633-671 ◽  
Author(s):  
Alexander Macfarlane

The experiments to which I shall refer were carried out in the physical laboratory of the University during the late summer session. I was ably assisted in conducting the experiments by three students of the laboratory,—Messrs H. A. Salvesen, G. M. Connor, and D. E. Stewart. The method which was used of measuring the difference of potential required to produce a disruptive discharge of electricity under given conditions, is that described in a paper communicated to the Royal Society of Edinburgh in 1876 in the names of Mr J. A. Paton, M. A., and myself, and was suggested to me by Professor Tait as a means of attacking the experimental problems mentioned below.The above sketch which I took of the apparatus in situ may facilitate tha description of the method. The receiver of an air-pump, having a rod capable of being moved air-tight up and down through the neck, was attached to one of the conductors of a Holtz machine in such a manner that the conductor of the machine and the rod formed one conducting system. Projecting from the bottom of the receiver was a short metallic rod, forming one conductor with the metallic parts of the air-pump, and by means of a chain with the uninsulated conductor of the Holtz machine. Brass balls and discs of various sizes were made to order, capable of being screwed on to the ends of the rods. On the table, and at a distance of about six feet from the receiver, was a stand supporting two insulated brass balls, the one fixed, the other having one degree of freedom, viz., of moving in a straight line in the plane of the table. The fixed insulated ball A was made one conductor with the insulated conductor of the Holtz and the rod of the receiver, by means of a copper wire insulated with gutta percha, having one end stuck firmly into a hole in the collar of the receiver, and having the other fitted in between the glass stem and the hollow in the ball, by which it fitted on to the stem tightly. A thin wire similarly fitted in between the ball B and its insulating stem connected the ball with the insulated half ring of a divided ring reflecting electrometer.


2007 ◽  
Vol 21 (02n03) ◽  
pp. 139-154 ◽  
Author(s):  
J. H. ASAD

A first-order differential equation of Green's function, at the origin G(0), for the one-dimensional lattice is derived by simple recurrence relation. Green's function at site (m) is then calculated in terms of G(0). A simple recurrence relation connecting the lattice Green's function at the site (m, n) and the first derivative of the lattice Green's function at the site (m ± 1, n) is presented for the two-dimensional lattice, a differential equation of second order in G(0, 0) is obtained. By making use of the latter recurrence relation, lattice Green's function at an arbitrary site is obtained in closed form. Finally, the phase shift and scattering cross-section are evaluated analytically and numerically for one- and two-impurities.


1999 ◽  
Author(s):  
Alexander V. Kasharin ◽  
Jens O. M. Karlsson

Abstract The process of diffusion-limited cell dehydration is modeled for a planar system by writing the one-dimensional diffusion-equation for a cell with moving, semipermeable boundaries. For the simplifying case of isothermal dehydration with constant diffusivity, an approximate analytical solution is obtained by linearizing the governing partial differential equations. The general problem must be solved numerically. The Forward Time Center Space (FTCS) and Crank-Nicholson differencing schemes are implemented, and evaluated by comparison with the analytical solution. Putative stability criteria for the two algorithms are proposed based on numerical experiments, and the Crank-Nicholson method is shown to be accurate for a mesh with as few as six nodes.


1987 ◽  
Vol 101 (2) ◽  
pp. 323-342
Author(s):  
W. B. Jurkat ◽  
H. J. Zwiesler

In this article we investigate the meromorphic differential equation X′(z) = A(z) X(z), often abbreviated by [A], where A(z) is a matrix (all matrices we consider have dimensions 2 × 2) meromorphic at infinity, i.e. holomorphic in a punctured neighbourhood of infinity with at most a pole there. Moreover, X(z) denotes a fundamental solution matrix. Given a matrix T(z) which together with its inverse is meromorphic at infinity (a meromorphic transformation), then the function Y(z) = T−1(z) X(z) solves the differential equation [B] with B = T−1AT − T−1T [1,5]. This introduces an equivalence relation among meromorphic differential equations and leads to the question of finding a simple representative for each equivalence class, which, for example, is of importance for further function-theoretic examinations of the solutions. The first major achievement in this direction is marked by Birkhoff's reduction which shows that it is always possible to obtain an equivalent equation [B] where B(z) is holomorphic in ℂ ¬ {0} (throughout this article A ¬ B denotes the difference of these sets) with at most a singularity of the first kind at 0 [1, 2, 5, 6]. We call this the standard form. The question of how many further simplifications can be made will be answered in the framework of our reduction theory. For this purpose we introduce the notion of a normalized standard equation [A] (NSE) which is defined by the following conditions:(i) , where r ∈ ℕ and Ak are constant matrices, (notation: )(ii) A(z) has trace tr for some c ∈ ℂ,(iii) Ar−1 has different eigenvalues,(iv) the eigenvalues of A−1 are either incongruent modulo 1 or equal,(v) if A−1 = μI, then Ar−1 is diagonal,(vi) Ar−1 and A−1 are triangular in opposite ways,(vii) a12(z) is monic (leading coefficient equals 1) unless a12 ≡ 0; furthermore a21(z) is monic in case that a12 ≡ 0 but a21 ≢ 0.


2019 ◽  
Vol 6 (2) ◽  
pp. a1-a7
Author(s):  
N. V. Lishchenko ◽  
V. P. Larshin ◽  
H. Krachunov

A study of a simplified mathematical model for determining the grinding temperature is performed. According to the obtained results, the equations of this model differ slightly from the corresponding more exact solution of the one-dimensional differential equation of heat conduction under the boundary conditions of the second kind. The model under study is represented by a system of two equations that describe the grinding temperature at the heating and cooling stages without the use of forced cooling. The scope of the studied model corresponds to the modern technological operations of grinding on CNC machines for conditions where the numerical value of the Peclet number is more than 4. This, in turn, corresponds to the Jaeger criterion for the so-called fast-moving heat source, for which the operation parameter of the workpiece velocity may be equivalently (in temperature) replaced by the action time of the heat source. This makes it possible to use a simpler solution of the one-dimensional differential equation of heat conduction at the boundary conditions of the second kind (one-dimensional analytical model) instead of a similar solution of the two-dimensional one with a slight deviation of the grinding temperature calculation result. It is established that the proposed simplified mathematical expression for determining the grinding temperature differs from the more accurate one-dimensional analytical solution by no more than 11 % and 15 % at the stages of heating and cooling, respectively. Comparison of the data on the grinding temperature change according to the conventional and developed equations has shown that these equations are close and have two points of coincidence: on the surface and at the depth of approximately threefold decrease in temperature. It is also established that the nature of the ratio between the scales of change of the Peclet number 0.09 and 9 and the grinding temperature depth 1 and 10 is of 100 to 10. Additionally, another unusual mechanism is revealed for both compared equations: a higher temperature at the surface is accompanied by a lower temperature at the depth. Keywords: grinding temperature, heating stage, cooling stage, dimensionless temperature, temperature model.


2002 ◽  
Vol 2 (Special) ◽  
pp. 578-595
Author(s):  
N. Konno

In this paper we consider limit theorems, symmetry of distribution, and absorption problems for two types of one-dimensional quantum random walks determined by $2 \times 2$ unitary matrices using our PQRS method. The one type was introduced by Gudder in 1988, and the other type was studied intensively by Ambainis et al. in 2001. The difference between both types of quantum random walks is also clarified.


Sign in / Sign up

Export Citation Format

Share Document