Duality Theory

Author(s):  
Christodoulos A. Floudas

Nonlinear optimization problems have two different representations, the primal problem and the dual problem. The relation between the primal and the dual problem is provided by an elegant duality theory. This chapter presents the basics of duality theory. Section 4.1 discusses the primal problem and the perturbation function. Section 4.2 presents the dual problem. Section 4.3 discusses the weak and strong duality theorems, while section 4.4 discusses the duality gap. This section presents the formulation of the primal problem, the definition and properties of the perturbation function, the definition of stable primal problem, and the existence conditions of optimal multiplier vectors.

Mathematics ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 372
Author(s):  
Liu He ◽  
Qi-Lin Wang ◽  
Ching-Feng Wen ◽  
Xiao-Yan Zhang ◽  
Xiao-Bing Li

In this paper, we introduce the notion of higher-order weak adjacent epiderivative for a set-valued map without lower-order approximating directions and obtain existence theorem and some properties of the epiderivative. Then by virtue of the epiderivative and Benson proper efficiency, we establish the higher-order Mond-Weir type dual problem for a set-valued optimization problem and obtain the corresponding weak duality, strong duality and converse duality theorems, respectively.


2013 ◽  
Vol 61 (2) ◽  
pp. 135-140
Author(s):  
M Babul Hasan ◽  
Md Toha

The objective of this paper is to improve the subgradient optimization method which is used to solve non-differentiable optimization problems in the Lagrangian dual problem. One of the main drawbacks of the subgradient method is the tuning process to determine the sequence of step-lengths to update successive iterates. In this paper, we propose a modified subgradient optimization method with various step size rules to compute a tuning- free subgradient step-length that is geometrically motivated and algebraically deduced. It is well known that the dual function is a concave function over its domain (regardless of the structure of the cost and constraints of the primal problem), but not necessarily differentiable. We solve the dual problem whenever it is easier to solve than the primal problem with no duality gap. However, even if there is a duality gap the solution of the dual problem provides a lower bound to the primal optimum that can be useful in combinatorial optimization. Numerical examples are illustrated to demonstrate the method. DOI: http://dx.doi.org/10.3329/dujs.v61i2.17059 Dhaka Univ. J. Sci. 61(2): 135-140, 2013 (July)


2014 ◽  
Vol 2014 ◽  
pp. 1-20 ◽  
Author(s):  
Xiaoqing Wang

We study a new class of optimization problems calledstochastic separated continuous conic programming(SSCCP). SSCCP is an extension to the optimization model calledseparated continuous conic programming(SCCP) which has applications in robust optimization and sign-constrained linear-quadratic control. Based on the relationship among SSCCP, its dual, and their discretization counterparts, we develop a strong duality theory for the SSCCP. We also suggest a polynomial-time approximation algorithm that solves the SSCCP to any predefined accuracy.


Author(s):  
Rowland Jerry Okechukwu Ekeocha ◽  
Chukwunedum Uzor ◽  
Clement Anetor

<p><span>The duality principle provides that optimization problems may be viewed from either of two perspectives, the primal problem or the dual problem. The solution to the dual problem provides a lower bound to the solution of the primal (minimization) problem. However the optimal values of the primal and dual problems need not be equal. Their difference is called the duality gap. For convex optimization problems, the duality gap is zero under a constraint qualification condition.<span>  </span>In other words given any linear program, there is another related linear program called the dual. In this paper, an understanding of the dual linear program will be developed. This understanding will give important insights into the algorithm and solution of optimization problem in linear programming. <span> </span>Thus the main concepts of duality will be explored by the solution of simple optimization problem.</span></p>


2020 ◽  
Vol 25 (2) ◽  
pp. 24
Author(s):  
Yue Wang ◽  
Jinchuan Zhou ◽  
Jingyong Tang

The augmented Lagrange multiplier as an important concept in duality theory for optimization problems is extended in this paper to generalized augmented Lagrange multipliers by allowing a nonlinear support for the augmented perturbation function. The existence of generalized augmented Lagrange multipliers is established by perturbation analysis. Meanwhile, the relations among generalized augmented Lagrange multipliers, saddle points, and zero duality gap property are developed.


2021 ◽  
Vol 2 (3) ◽  
Author(s):  
Najeeb Abdulaleem

AbstractIn this paper, a class of E-differentiable vector optimization problems with both inequality and equality constraints is considered. The so-called vector mixed E-dual problem is defined for the considered E-differentiable vector optimization problem with both inequality and equality constraints. Then, several mixed E-duality theorems are established under (generalized) V-E-invexity hypotheses.


Author(s):  
Tiep Le ◽  
Tran Cao Son ◽  
Enrico Pontelli

This paper proposes Multi-context System for Optimization Problems (MCS-OP) by introducing conditional costassignment bridge rules to Multi-context Systems (MCS). This novel feature facilitates the definition of a preorder among equilibria, based on the total incurred cost of applied bridge rules. As an application of MCS-OP, the paper describes how MCS-OP can be used in modeling Distributed Constraint Optimization Problems (DCOP), a prominent class of distributed optimization problems that is frequently employed in multi-agent system (MAS) research. The paper shows, by means of an example, that MCS-OP is more expressive than DCOP, and hence, could potentially be useful in modeling distributed optimization problems which cannot be easily dealt with using DCOPs. It also contains a complexity analysis of MCS-OP.


2001 ◽  
Author(s):  
Gonzalo R. Feijóo ◽  
Assad A. Oberai ◽  
Peter M. Pinsky

Abstract We present a method to calculate the derivative of a functional that depends on the shape of a body immersed in an acoustic media. The functional depends implicitly on the shape through the solution of an exterior acoustic problem. The derivative is calculated in terms of the solution of the primal problem and an auxiliary problem, the adjoint problem. An important aspect of this method is that the cost of calculating the derivative is independent of the number of parameters used to represent the shape of the body. This allows for efficient solution of optimization problems in structural acoustics.


Sign in / Sign up

Export Citation Format

Share Document