Hamiltonian Fluid Dynamics

Author(s):  
Rick Salmon

In this final chapter, we return to the subject of the first: the fundamental principles of fluid mechanics. In chapter 1, we derived the equations of fluid motion from Hamilton’s principle of stationary action, emphasizing its logical simplicity and the resulting close correspondence between mechanics and thermodynamics. Now we explore the Hamiltonian approach more fully, discovering its other advantages. The most important of these advantages arise from the correspondence between the symmetry properties of the Lagrangian and the conservation laws of the resulting dynamical equations. Therefore, we begin with a very brief introduction to symmetry and conservation laws. Noether’s theorem applies to the equations that arise from variational principles like Hamilton’s principle. According to Noether’s theorem : If a variational principle is invariant to a continuous transformation of its dependent and independent variables, then the equations arising from the variational principle possess a divergence-form conservation law. The invariance property is also called a symmetry property. Thus Noether’s theorem connects symmetry properties and conservation laws. We shall neither state nor prove the general form of Noether’s theorem; to do so would require a lengthy digression on continuous groups. Instead we illustrate the connection between symmetry and conservation laws with a series of increasingly complex and important examples. These examples convey the flavor of the general theory. Our first example is very simple. Consider a body of mass m moving in one dimension. The body is attached to the end of a spring with spring-constant K. Let x(t) be the displacement of the body from its location when the spring is unstretched.

1993 ◽  
Vol 60 (4) ◽  
pp. 954-958 ◽  
Author(s):  
L. Cveticanin

In this paper, a method for obtaining conservation laws of dynamic systems with variable mass is developed. It is based on Noether’s theorem to the existence of conservation laws and D’Alembert’s variational principle. In the general case, a dynamic system with variable mass is purely nonconservative. Noether’s identity for such a case is expanded by the terms that describe the mass variation. If Noether’s identity if satisfied, a conservation law exists. Two groups of systems with variable mass are considered: a nonlinear vibrating machine and a rotor with variable mass. For these systems, conservation laws are obtained using the procedure developed in this paper.


Variational principles for problems in fluid dynamics, plasma dynamics and elasticity are discussed in the context of the general problem of finding a variational principle for a given system of equations. In continuum mechanics, the difficulties arise when the Eulerian description is used; the extension of Hamilton’s principle is straightforward in the Lagrangian description. It is found that the solution to these difficulties is to represent the Eulerian velocity v by expressions of the type v = ∇ X + λ∇ μ introduced by Clebsch (1859) for the case of isentropic fluid flow. The relation with Hamilton’s principle is elucidated following work by Lin (1963). It is also shown that the potential representation of electromagnetic fields and the variational principle for Maxwell’s equations can be fitted into the same overall scheme. The equations for water waves, waves in rotating and stratified fluids, Rossby waves, and plasma waves are given particular attention since the need for variational formulations of these equations has arisen in recent work on wave propagation (Whitham 1967). The idea of solving some of the equations by ‘potential representations’ (such as the Clebsch representation in continuum mechanics and the scalar and vector potentials in electromagnetism), and then finding a variational principle for the remaining equations, seems to be the crucial one for the general problem. An analogy with Pfaff’s problem in differential forms is given to support this idea.


Many versions of an extension of Hamilton’s principle to perfect fluid flows exist in the literature. In this paper the most general form, due to Serrin, is identified and the limitations of some of the others discussed. An extension of the variational principle to viscous, thermally conducting fluid flows is suggested. This is compared with some other variational principles for viscous flows, and the relative merits of the various approaches are discussed.


Author(s):  
Laurent Baulieu ◽  
John Iliopoulos ◽  
Roland Sénéor

General introduction with a review of the principles of Hamiltonian and Lagrangian mechanics. The connection between symmetries and conservation laws, with a presentation of Noether’s theorem, is included.


Author(s):  
C.J Cotter ◽  
D.D Holm ◽  
P.E Hydon

We construct multisymplectic formulations of fluid dynamics using the inverse of the Lagrangian path map. This inverse map, the ‘back-to-labels’ map, gives the initial Lagrangian label of the fluid particle that currently occupies each Eulerian position. Explicitly enforcing the condition that the fluid particles carry their labels with the flow in Hamilton's principle leads to our multisymplectic formulation. We use the multisymplectic one-form to obtain conservation laws for energy, momentum and an infinite set of conservation laws arising from the particle relabelling symmetry and leading to Kelvin's circulation theorem. We discuss how multisymplectic numerical integrators naturally arise in this approach.


Author(s):  
Daniela Manolea

The study is explanatory-interpretative and argues the practical character of Physics. It starts from premise that formation of a correct conception of the world begins with the understanding of physics. It is one of the earliest chapters of human knowledge, studying the material world from the microscopic level of the particles to the macroscopic level of the celestial body. As an example for the practical importance of applying the laws of physics take the set of physical laws of conservation, in particular, it explains the practical impact of Emmy Noether's Theorem.


Author(s):  
Shaofan Li ◽  
Anurag Gupta ◽  
Xanthippi Markenscoff

In this paper, we present new conservation laws of linear elasticity which have been discovered. These newly discovered conservation laws are expressed solely in terms of the Cauchy stress tensor, and they are genuine, non–trivial conservation laws that are intrinsically different from the displacement conservation laws previously known. They represent the variational symmetry conditions of combined Beltrami–Michell compatibility equations and the equilibrium equations. To derive these conservation laws, Noether's theorem is extended to partial differential equations of a tensorial field with general boundary conditions. By applying the tensorial version of Noether's theorem to Pobedrja's stress formulation of three–dimensional elasticity, a class of new conservation laws in terms of stresses has been obtained.


Sign in / Sign up

Export Citation Format

Share Document