Chemorheology of Thermosets

Author(s):  
Chang Dae Han

Thermosets (e.g., unsaturated polyester, epoxy, urethane) are small molecules containing functional groups, which undergo chemical reactions (commonly referred to as “cure”) in the presence of an initiator(s) or a catalyst(s). In a broader sense, thermosets can be regarded as being parts of reactive polymer systems, which include pairs of polymers (e.g., blends of maleated polyolefin and nylon 6, as presented in Chapter 11) that undergo chemical reactions during compounding, and mixtures of an elastomer and a vulcanizing agent that undergo cross-link reactions (commonly referred to as vulcanization) at an elevated temperature. The subject of investigating the rheological behavior of reactive polymer systems is referred to as “chemorheology.” Since chemorheology is such a very broad field of investigation, one must specify the polymer system under consideration, classifying as chemorheology of thermosets, chemorheology of reactive polymer blends, chemorheology of elastomer vulcanization, and so on. In this chapter, for a number of reasons we restrict our presentation to the chemorheology of thermosets only. These reasons include (1) the limited space available here, meaning that it is not possible to present the chemorheology of every reactive polymer system, (2) thermosets play a very important role in polymer processing from an industrial point of view, and (3) the presentation of the chemorheology of thermosets in this chapter lays the foundation for the presentation of processing of thermosets in Chapters 11–13 of Volume 2. In the 1970s and 1980s, considerable amounts of effort were spent on investigating the chemorheology of thermosets. There are many experimental techniques that have been used to investigate the cure kinetics of thermosets: differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, dielectric measurements, and rheokinetic measurements. There are monographs (Kock 1977; May 1983; Turi 1981) and a comprehensive review article (Halley and Mackay 1996) on the subject. A better understanding of the chemorheology of thermosets requires an understanding of the kinetics of chemical reactions during cure. It can then easily be surmised that an understanding of the chemorheology of thermosets is much more complex than the rheology of thermoplastics presented in Chapter 6 through Chapter 12.

2021 ◽  
pp. 002199832110015
Author(s):  
Alexander Vedernikov ◽  
Yaroslav Nasonov ◽  
Roman Korotkov ◽  
Sergey Gusev ◽  
Iskander Akhatov ◽  
...  

Pultrusion is a highly efficient composite manufacturing process. To accurately describe pultrusion, an appropriate model of resin cure kinetics is required. In this study, we investigated cure kinetics modeling of a vinyl ester pultrusion resin (Atlac 430) in the presence of aluminum hydroxide (Al(OH)3) and zinc stearate (Zn(C18H35O2)2) as processing additives. Herein, four different resin compositions were studied: neat resin composition, composition with Al(OH)3, composition comprising Zn(C18H35O2)2, and composition containing both Al(OH)3 and Zn(C18H35O2)2. To analyze each composition, we performed differential scanning calorimetry at the heating rates of 5, 7.5, and 10 K/min. To characterize the cure kinetics of Atlac 430, 16 kinetic models were tested, and their performances were compared. The model based on the [Formula: see text]th-order autocatalytic reaction demonstrated the best results, with a 4.5% mean squared error (MSE) between the experimental and predicted data. This study proposes a method to reduce the MSE resulting from the simultaneous melting of Zn(C18H35O2)2. We were able to reduce the MSE by approximately 34%. Numerical simulations conducted at different temperatures and pulling speeds demonstrated a significant influence of resin composition on the pultrusion of a flat laminate profile. Simulation results obtained for the 600 mm long die block at different die temperatures (115, 120, 125, and 130 °C) showed that for a resin with a final degree of cure exceeding 95% at the die exit, the maximum difference between the predicted values of pulling speed for a specified set of compositions may exceed 1.7 times.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ali Kuliaei ◽  
Iraj Amiri Amraei ◽  
Seyed Rasoul Mousavi

Abstract The purpose behind this research was to determine the optimum formulation and investigate the cure kinetics of a diglycidyl ether of bisphenol-A (DGEBA)-based epoxy resin cured by dicyandiamide and diuron for use in prepregs. First, all formulations were examined by the tensile test, and then, the specimens with higher mechanical properties were further investigated by viscometry and tack tests. The cure kinetics of the best formulation (based on tack test) in nonisothermal mode was investigated using differential scanning calorimetry at different heating rates. Kissinger and Ozawa method was used for determining the kinetic parameters of the curing process. The activation energy obtained by this method was 71.43 kJ/mol. The heating rate had no significant effect on the reaction order and the total reaction order was approximately constant ( m + n ≅ 2.1 $m+n\cong 2.1$ ). By comparing the experimental data and the theoretical data obtained by Kissinger and Ozawa method, a good agreement was seen between them. By increasing the degree of conversion, the viscosity decreased; as the degree of conversion increased, so did the slope of viscosity. The results of the tack test also indicated that the highest tack could be obtained with 25% progress of curing.


2020 ◽  
Vol 4 (3) ◽  
pp. 111
Author(s):  
Zohre Karami ◽  
Seyed Mohammad Reza Paran ◽  
Poornima Vijayan P. ◽  
Mohammad Reza Ganjali ◽  
Maryam Jouyandeh ◽  
...  

Layered double hydroxide (LDH) minerals are promising candidates for developing polymer nanocomposites and the exchange of intercalating anions and metal ions in the LDH structure considerably affects their ultimate properties. Despite the fact that the synthesis of various kinds of LDHs has been the subject of numerous studies, the cure kinetics of LDH-based thermoset polymer composites has rarely been investigated. Herein, binary and ternary structures, including [Mg0.75 Al0.25 (OH)2]0.25+ [(CO32−)0.25/2∙m H2O]0.25−, [Mg0.75 Al0.25 (OH)2]0.25+ [(NO3−)0.25∙m H2O]0.25− and [Mg0.64 Zn0.11 Al0.25 (OH)2]0.25+ [(CO32−)0.25/2∙m H2O]0.25−, have been incorporated into epoxy to study the cure kinetics of the resulting nanocomposites by differential scanning calorimetry (DSC). Both integral and differential isoconversional methods serve to study the non-isothermal curing reactions of epoxy nanocomposites. The effects of carbonate and nitrate ions as intercalating agents on the cure kinetics are also discussed. The activation energy of cure (Eα) was calculated based on the Friedman and Kissinger–Akahira–Sunose (KAS) methods for epoxy/LDH nanocomposites. The order of autocatalytic reaction (m) for the epoxy/Mg-Al-NO3 (0.30 and 0.254 calculated by the Friedman and KAS methods, respectively) was smaller than that of the neat epoxy, which suggested a shift of the curing mechanism from an autocatalytic to noncatalytic reaction. Moreover, a higher frequency factor for the aforementioned nanocomposite suggests that the incorporation of Mg-Al-NO3 in the epoxy composite improved the curability of the epoxy. The results elucidate that the intercalating anions and the metal constituent of LDH significantly govern the cure kinetics of epoxy by the participation of nitrate anions in the epoxide ring-opening reaction.


2019 ◽  
Vol 58 (16) ◽  
pp. 1757-1765 ◽  
Author(s):  
Suryanarayanan Krishnaswamy ◽  
Veronica Marchante ◽  
Hrushikesh Abhyankar ◽  
Zhaorong Huang ◽  
James Brighton

2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Haleh Nowruzi Varzeghani ◽  
Iraj Amiri Amraei ◽  
Seyed Rasoul Mousavi

This study investigated the effect of polyethylene glycol (PEG) and nanosilica (NS) on the physical-mechanical properties and cure kinetics of diglycidyl ether of bisphenol-A-based epoxy (DGEBA-based EP) resin. For this purpose, tensile and viscometry tests, dynamic mechanical thermal analysis (DMTA), and differential scanning calorimetry (DSC) were carried out under dynamic conditions. The results showed that adding NS and PEG enhances the maximum cure temperature as well as the heat of cure reaction (ΔH) in EP-NS, while it decreases in EP-PEG and EP-PEG-NS. The cure kinetic parameters of EP-PEG-NS were calculated by Kissinger, Ozawa, and KSA methods and compared with each other. The Ea calculated from the Kissinger method (96.82 kJ/mol) was found to be lower than that of the Ozawa method (98.69 kJ/mol). Also, according to the KAS method, the apparent Ea was approximately constant within the 10-90% conversion range. Tensile strength and modulus increased by adding NS, while tensile strength diminished slightly by adding PEG to EP-NS. The glass transition temperature (Tg) was calculated using DMTA which was increased and decreased by the addition of NS and PEG, respectively. The results of the viscometry test showed that the viscosity increased with the presence of both PEG and NS and it prevented the deposition of solid particles.


Sign in / Sign up

Export Citation Format

Share Document