The Great Dying

World on Fire ◽  
2021 ◽  
pp. 157-171
Author(s):  
Mark Rowlands

The benefits of no longer eating animals extend beyond climate mitigation. It will also mitigate current species extinction trajectories. This chapter looks at the history of human-caused extinctions. A great extinction occurs when a percentage of a species dies out (e.g., 75%). A mass extinction occurs when the actual rate of extinction exceeds the normal background rate by a certain margin (e.g., 1000×). There are good reasons for thinking that a mass extinction of species is currently occurring. Humans are the cause of this, as they have been the cause of all major extinction pulses since the Quaternary period. This chapter examines one of the Quaternary extinction pulses of 8000–11,500 years ago and defends the hominin paleobiogeography hypothesis, that is, that humans were substantially responsible for this pulse of extinctions. An undue focus on extinction, however, can mask the harm we are currently doing to species.

Author(s):  
Mark Rowlands

We face three epoch-defining environmental problems: climate, extinction, and pestilence. Our climate is changing in ways that will have serious consequences for humans, and it may even profoundly affect the ability of the planet to support life. All around us, other species are disappearing at a rate between several hundred and several thousand times the normal background rate of extinction. The SARS-CoV-2 virus, which has wreaked social and economic havoc, is merely the latest model off a blossoming production line of newly emerging infectious diseases, many of which have the potential to be far worse. At the heart of these problems lies an ancient habit: eating animals. This habit is the most significant driver of species extinction and of newly emerging infectious diseases, and one of the most important drivers of climate change. This is a habit we can no longer afford to indulge. Breaking it will substantially reduce climate emissions. It will stem our insatiable hunger for land that is at the heart of both the problems of extinction and pestilence. Most importantly, breaking this habit will make available vast areas of land suitable for afforestation: the return of forests to where they once grew. Afforestation will significantly mitigate all three problems. But only if we stop eating animals will we have enough land for this strategy to work.


2014 ◽  
Vol 29 (2) ◽  
pp. 452-462 ◽  
Author(s):  
Jurriaan M. De Vos ◽  
Lucas N. Joppa ◽  
John L. Gittleman ◽  
Patrick R. Stephens ◽  
Stuart L. Pimm

2018 ◽  
Vol 938 (8) ◽  
pp. 38-43
Author(s):  
S.A. Kotler ◽  
I.D. Zolnikov ◽  
D.V. Pchelnikov

The types of geological and geomorphological structure of the Katun valley are distinguished in the work. For this, a method of geoinformation mapping using morphometric indicators of the valley’s width and meandering of the channel was developed. The morphometric parameter of the valley’s width was calculated as the total area of terraces. As the morphometric parameters of the channel’s meandering, the angles of the river segments’ deviation relative to each other were calculated. Conjugated analysis of these morphometric indicators enabled identifying 18 morphotypes. These morphotypes according to the geological and geomorphological structure of the valley were combined into 4 classes. Separation of the Katun valley in certain classes and morphotypes is due to the different geological history of these sites during the Quaternary period. The most important reasons predetermining the modern variety of geological and geomorphological types of the valley are neotectonic movements and exogenous phenomena (glaciers, dam lakes, landslides, etc.) naturally localized in the space from the upstream of the river to its exit into the foothills. The developed method can be applied for quantitative morphometric classification of the mountain rivers’ valleys in other regions.


Paleobiology ◽  
1990 ◽  
Vol 16 (2) ◽  
pp. 187-203 ◽  
Author(s):  
Douglas H. Erwin

Paleozoic and post-Paleozoic marine faunas are strikingly different in composition. Paleozoic marine gastropods may be divided into archaic and modern groups based on taxonomic composition, ecological role, and morphology. Paleozoic assemblages were dominated by pleurotomariids (Eotomariidae and Phymatopleuridae), the Pseudozygopleuridae, and, to a lesser extent, the Euomphalidae, while Triassic assemblages were dominated by the Trochiina, Amberleyacea, and new groups of Loxonematoidea and Pleurotomariina. Several new groups of caenogastropods appeared as well. Yet the importance of the end-Permian mass extinction in generating these changes has been questioned. As part of a study of the diversity history of upper Paleozoic and Triassic gastropods, to test the extent to which taxonomic and morphologic trends established in the late Paleozoic are continued after the extinction, and to determine the patterns of selectivity operating during the extinction, I assembled generic and morphologic diversity data for 396 genera in 75 families from the Famennian through the Norian stages. Within this interval, gastropod genera underwent an adaptive radiation during the Visean and Namurian, largely of pleurotomariids, a subsequent period of dynamic stability through the Leonardian, a broad-based decline during the end-Permian mass extinction, and a two-phase post-extinction rebound during the Triassic. The patterns of generic diversity within superfamily-level clades were analyzed using Q-mode factor analysis and detrended correspondence analysis.The results demonstrate that taxonomic affinity, previous clade history, generic age, and gross morphology did not determine survival probability of genera during the end-Permian extinction, with the exception of the bellerophontids, nor did increasing diversity within clades or expansion of particular morphologies prior to the extinction facilitate survival during the extinction or success after it. The pleurotomariids diversified during the Lower Permian, but were heavily hit by the extinction. Similarly, trochiform and turriculate morphologies, among those which Vermeij (1987) has identified as having increased predation resistance, were expanding in the late Paleozoic, but suffered similar extinction rates to other nondiversifying clades. Survival was a consequence of broad geographic and environmental distribution, as was the case during background periods.


2018 ◽  
Vol 7 (1) ◽  
pp. 152-165
Author(s):  
Tega Brain

This paper considers some of the limitations and possibilities of computational models in the context of environmental inquiry, specifically exploring the modes of knowledge production that it mobilizes. Historic computational attempts to model, simulate and make predictions about environmental assemblages, both emerge from and reinforce a systems view on the world. The word eco-system itself stands as a reminder that the history of ecology is enmeshed with systems theory and presup-poses that species entanglements are operational or functional. More surreptitiously, a systematic view of the environment connotes it as bounded, knowable and made up of components operating in chains of cause and effect. This framing strongly invokes possibilities of manipulation and control and implicitly asks: what should an ecosystem be optimized for? This question is particularly relevant at a time of rapid climate change, mass extinction and, conveniently, an unprecedented surplus of computing.


Author(s):  
T. S. Kemp

‘History of reptiles’ describes the origin and early evolution of reptiles, from the early ancestor-like Hylonomus and Petrolacosaurus 320 million years ago (mya) in the Carboniferous period. The end-Permian mass extinction, 250 mya, removed over 90 per cent of the world’s species of animals and plants, but one group—the archosaurs—began to expand and diversify. The archosaurs included the dinosaurs, made up of the Theropoda, the Sauropodomorphs, the Ornithischia, the pterosaurs, and the crocodiles. In the Mesozoic Era, several new kinds of reptiles evolved adaptations for life in the sea—plesiosaurs, ichthyosaurs, and others. The end-Cretaceous mass extinction, 66 mya, ended the dinosaurs, but many lizards, snakes, chelonians, and crocodiles survived.


2018 ◽  
Vol 66 (6) ◽  
pp. 379 ◽  
Author(s):  
Steven J. B. Cooper ◽  
Kym Ottewell ◽  
Anna J. MacDonald ◽  
Mark Adams ◽  
Margaret Byrne ◽  
...  

Southern brown (Isoodon obesulus) and golden (Isoodon auratus) bandicoots are iconic Australian marsupials that have experienced dramatic declines since European settlement. Conservation management programs seek to protect the remaining populations; however, these programs are impeded by major taxonomic uncertainties. We investigated the history of population connectivity to inform subspecies and species boundaries through a broad-scale phylogeographic and population genetic analysis of Isoodon taxa. Our analyses reveal a major east–west phylogeographic split within I. obesulus/I. auratus, supported by both mtDNA and nuclear gene analyses, which is not coincident with the current species or subspecies taxonomy. In the eastern lineage, all Tasmanian samples formed a distinct monophyletic haplotype group to the exclusion of all mainland samples, indicative of long-term isolation of this population from mainland Australia and providing support for retention of the subspecific status of the Tasmanian population (I. o. affinis). Analyses further suggest that I. o. obesulus is limited to south-eastern mainland Australia, representing a significant reduction in known range. However, the analyses provide no clear consensus on the taxonomic status of bandicoot populations within the western lineage, with further analyses required, ideally incorporating data from historical museum specimens to fill distributional gaps.


2019 ◽  
Vol 116 (30) ◽  
pp. 14813-14822 ◽  
Author(s):  
Daniel H. Rothman

The history of the carbon cycle is punctuated by enigmatic transient changes in the ocean’s store of carbon. Mass extinction is always accompanied by such a disruption, but most disruptions are relatively benign. The less calamitous group exhibits a characteristic rate of change whereas greater surges accompany mass extinctions. To better understand these observations, I formulate and analyze a mathematical model that suggests that disruptions are initiated by perturbation of a permanently stable steady state beyond a threshold. The ensuing excitation exhibits the characteristic surge of real disruptions. In this view, the magnitude and timescale of the disruption are properties of the carbon cycle itself rather than its perturbation. Surges associated with mass extinction, however, require additional inputs from external sources such as massive volcanism. Surges are excited when CO2 enters the oceans at a flux that exceeds a threshold. The threshold depends on the duration of the injection. For injections lasting a time ti≳10,000 y in the modern carbon cycle, the threshold flux is constant; for smaller ti, the threshold scales like ti−1. Consequently the unusually strong but geologically brief duration of modern anthropogenic oceanic CO2 uptake is roughly equivalent, in terms of its potential to excite a major disruption, to relatively weak but longer-lived perturbations associated with massive volcanism in the geologic past.


2013 ◽  
Vol 9 (3) ◽  
pp. 20130095 ◽  
Author(s):  
Olja Toljagić ◽  
Richard J. Butler

Pseudosuchia, one of the two main clades of Archosauria (Reptilia: Diapsida), suffered a major decline in lineage diversity during the Triassic–Jurassic (TJ) mass extinction (approx. 201 Ma). Crocodylomorpha, including living crocodilians and their extinct relatives, is the only group of pseudosuchians that survived into the Jurassic. We reassess changes in pseudosuchian morphological diversity (disparity) across this time interval, using considerably larger sample sizes than in previous analyses. Our results show that metrics of pseudosuchian disparity did not change significantly across the TJ boundary, contrasting with previous work suggesting low pseudosuchian disparity in the Early Jurassic following the TJ mass extinction. However, a significant shift in morphospace occupation between Late Triassic and Early Jurassic taxa is recognized, suggesting that the TJ extinction of many pseudosuchian lineages was followed by a major and geologically rapid adaptive radiation of crocodylomorphs. This marks the onset of the spectacularly successful evolutionary history of crocodylomorphs in Jurassic and Cretaceous ecosystems.


2020 ◽  
Author(s):  
Sveva Corrado ◽  
Andrea Bollati ◽  
Marina Fabbri

<p>Between 2017 and 2019, a prototype of a geological garden for the dissemination of Geological Sciences to the general public was created in the open-air spaces of the Department of Sciences of the Roma Tre University. This first nucleus is the result of a Citizen Science activity carried out by students of the High Schools of Rome and its province, conceived and guided by a group of University researchers and high school teachers, in collaboration with local institutions and some mining companies operating in the surroundings of Rome. Currently the prototype consists of six large rock samples representative of lithotypes cropping out in the Roman Campaign and in the nearby Central Apennines that allow to tell the evolution of the territory surrounding the city of Rome since about 15 Ma ago, with particular reference to the history of the Roman countryside in the Quaternary period. Guided tours for schools and a general public and events popularizing scientific culture at various scales have represented the main dissemination activities carried out so far. Currently the garden is being expanded and integrated with numerous plant species representative of the botanical heritage of the Lazio region.</p>


Sign in / Sign up

Export Citation Format

Share Document