Interfacial phenomena

Author(s):  
Boris S. Bokstein ◽  
Mikhail I. Mendelev ◽  
David J. Srolovitz

An interface is a surface across which the phase changes. Interfaces must be present in all heterogeneous systems, such as those discussed above. Interfacial properties necessarily differ from those of the bulk phases since the atomic bonding/structure of an interface represents a compromise between those of the phases on either side of the interface. For example, an atom at a free surface, which is an interface between a condensed phase and a gas (or a vacuum), generally has fewer neighbors with which to bond than it would have if it were in the bulk, condensed phase. In an equilibrium multi-component system, the chemical potential of each species must be the same in all phases, as well as at the interface. Not surprisingly, the chemical composition of the interface will, in general, differ from that of the bulk. For example, molecules in a gas (or solute in a condensed phase) can adsorb (segregate) onto the surface (interface) of a condensed phase. Interfacial processes play important roles in all areas of materials science and in many (most) areas of modern technology. As the trend toward miniaturization in microelectronics continues and interest in nanoscale structures grows, interfacial phenomena will become even more important. Clearly, the ratio of the number of atoms at surfaces and interfaces to those in the bulk grows as system size decreases (70% of the atoms in a nanometer diameter particle are on a surface!). Therefore, the thermodynamic properties of a system become increasingly dominated by interfacial properties as the dimensions of the system shrink. We can distinguish several types of interfaces: solid–liquid, liquid–gas, solid–gas, solid phase α–solid phase β, and grain boundaries. The meaning of the first four types of interface is self-explanatory. Grain boundaries represent a special class of interfaces; interfaces across which the phase does not change. What does change abruptly across this interface is the spatial orientation of the crystallographic axes. Most crystalline materials are polycrystalline, which means that they are composed of a large number of grains, each with a unique crystallographic orientation with respect to some laboratory frame of reference.

2017 ◽  
Vol 373 ◽  
pp. 284-287
Author(s):  
Bożena Zgardzińska ◽  
Maciej Tydda ◽  
Jan Wawryszczuk

The positron annihilation lifetime spectroscopy (PALS) was applied to investigate the properties of capsules composed of n-alkanes (filling material) and polymer (shell) in the broad range of pressures up to 450 MPa. These microcapsules aggregate into the grains having about 200 μm in diameter. Their properties were investigated as a function of pressure (p) at several selected temperatures: when the filling material is in liquid, rotator and solid phase. Pressure experiments were performed without gas access to the sample and in an argon atmosphere. Two o-Ps components were found, the longer-lived correspond to the filler material, and the shorter-lived one – to the shell. These components change with p; even a small pressure (6 MPa) reduces considerably the o-Ps lifetimes (τ). At 303 K the o-Ps lifetime in the core changes non-monotonically, and at 60 MPa τ is higher than at 20 MPa. The increase of pressure induces the phase changes in the filling material, and also produces the deformation of microcapsule aggregates and crash of small capsules at the grain boundary region. Internal structure of the microcapsules was observed by SEM.


2004 ◽  
Vol 59 (9) ◽  
pp. 621-622 ◽  
Author(s):  
Fatih Ucun ◽  
Vesile Gūçlü

The force constants of the internal coordinates of nonlinear XY2 molecules in the gas-phase were calculated by using the GF matrix method. The matrix solution was carried out by means a computer program built relative to the Newton-Raphson method and the calculations were listed in a table. The force constants of some molecules in the liquidand solid- phase were also found and compared with these ones, and it was seen that the force constants for more condensed phase are lower as in an agreement with having its lower frequency.


2020 ◽  
Author(s):  
Nathaniel E. Kallmyer ◽  
Nathan E. Rider ◽  
Nigel F. Reuel

AbstractSolid phase peptide synthesis (SPPS) has enabled widespread use of synthetic peptides in applications ranging from pharmaceuticals to materials science. The demand for synthetic peptides has driven recent efforts to produce automated SPPS synthesizers which utilize fluid-handling components common to chemistry laboratories to drive costs down to several thousand dollars. Herein, we describe the design and validation of a more ‘frugal’ SPPS synthesizer that uses inexpensive, consumer-grade fluid-handling components to achieve a prototype price point between US$300 and $600. We demonstrated functionality by preparing and characterizing peptides with a variety of distinct properties including binding functionality, nanoscale self-assembly, and oxidation-induced fluorescence. This system yielded micromoles of peptide at a cost of approximately $1/residue, a cost which may be further reduced by optimization and bulk purchasing.


2017 ◽  
Vol 106 ◽  
pp. 97-101 ◽  
Author(s):  
Anna H. Kaksonen ◽  
Silja Särkijärvi ◽  
Jaakko A. Puhakka ◽  
Esa Peuraniemi ◽  
Saku Junnikkala ◽  
...  

2021 ◽  
Vol 1038 ◽  
pp. 177-184
Author(s):  
Oksana Borisenko ◽  
Sergey Logvinkov ◽  
Galina Shabanova ◽  
Oksana Myrgorod

The basis of modern materials science is multicomponent systems, on their basis it is possible to create various combinations of phases in structural materials with a set of specified properties. The investigated system MgO-Al2O3-FeO-TiO2 is promising for the production of periclase-spinel refractories used as lining of rotary kilns during cement clinker firing, which are highly resistant to chemical corrosion when exposed to a gas environment and cement clinker components; thermomechanical stresses. However, in the reference literature and scientific articles, no information was found on the structure of the four-component diagram of the state of the MgO-Al2O3-FeO-TiO2 system, partial elements of its structure are given only in the composition of multicomponent systems [1-3]. Thus, research to the study of the subsolidus structure of the MgO-Al2O3-FeO-TiO2 system, which is the physicochemical basis for the development of compositions of periclase-spinel refractories, is urgent.


2005 ◽  
Vol 127 (18) ◽  
pp. 6641-6651 ◽  
Author(s):  
Agam R. Sheth ◽  
Joseph W. Lubach ◽  
Eric J. Munson ◽  
Francis X. Muller ◽  
David J. W. Grant

2005 ◽  
Vol 59 (11) ◽  
pp. 1420-1426
Author(s):  
Stanley J. Bajic ◽  
Roger W. Jones ◽  
John F. McClelland

The phase of the photoacoustic signal is known to be a sensitive and accurate means to investigate, both qualitatively and quantitatively, static multilayer heterogeneous systems. According to theory, the maximum phase delay for a very weakly absorbing homogeneous sample should be within 45° of a very strongly absorbing sample, while for heterogeneous samples the phase delay can be greater than 45°. Here we report the observation of photoacoustic phase delays greater than 350° by extending the use of step-scan phase modulation photoacoustic spectroscopy to study a non-repetitive dynamic system in situ, in real time. These large phase delays correspond to sampling several thermal diffusion lengths into the sample. The model system used in this study consisted of a hydrocarbon grease diffusing through a porous Teflon film. The progress of the diffusion was tracked by monitoring both the photoacoustic signal magnitude and the phase of the hydrocarbon grease after isolation from the Teflon film signal contributions at two different phase modulation frequencies.


2011 ◽  
Vol 2011 ◽  
pp. 1-14 ◽  
Author(s):  
Kuninori Kitahara ◽  
Toshitomo Ishii ◽  
Junki Suzuki ◽  
Takuro Bessyo ◽  
Naoki Watanabe

Raman microscopy was applied to characterize polycrystalline silicon (poly-Si) on glass substrates for application as thin-film transistors (TFTs) integrated on electronic display panels. This study examines the crystallographic defects and stress in poly-Si films grown by industrial techniques: solid phase crystallization and excimer laser crystallization (ELC). To distinguish the effects of defects and stress on the optical-phonon mode of the Si–Si bond, a semiempirical analysis was performed. The analysis was compared with defect images obtained through electron microscopy and atomic force microscopy. It was found that the Raman intensity for the ELC film is remarkably enhanced by the hillocks and ridges located around grain boundaries, which indicates that Raman spectra mainly reflect the situation around grain boundaries. A combination of the hydrogenation of films and the observation of the Si-hydrogen local-vibration mode is useful to support the analysis on the defects. Raman microscopy is also effective for detecting the plasma-induced damage suffered during device processing and characterizing the performance of Si layer in TFTs.


Sign in / Sign up

Export Citation Format

Share Document