Fundamentality

Author(s):  
Richard Healey

The metaphor that fundamental physics is concerned to say what the natural world is like at the deepest level may be cashed out in terms of entities, properties, or laws. The role of quantum field theories in the Standard Model of high-energy physics suggests that fundamental entities, properties, and laws are to be sought in these theories. But the contextual ontology proposed in Chapter 12 would support no unified compositional structure for the world; a quantum state assignment specifies no physical property distribution sufficient even to determine all physical facts; and quantum theory posits no fundamental laws of time evolution, whether deterministic or stochastic. Quantum theory has made a revolutionary contribution to fundamental physics because its principles have permitted tremendous unification of science through the successful application of models constructed in conformity to them: but these models do not say what the world is like at the deepest level.

1994 ◽  
Vol 348 ◽  
Author(s):  
E. Auffray ◽  
I. Dafinei ◽  
P. Lecoq ◽  
M. Schneegans

ABSTRACTCerium fluoride offers a reasonable compromise between parameters like the density, the light yield, the scintillation characteristics (particularly the decay time) and the radiation hardness, and is considered today as the best candidate for large electromagnetic calorimeters in future High Energy Physics experiments. Details on the performances of large crystals produced by different manufacturers all over the world and measured by the Crystal Clear collaboration will be shown and the usefulness of a good collaboration between the industry and the users will be highlighted by some examples on the light yield and radiation hardness improvement.


Author(s):  
W. J. Torres Bobadilla ◽  
G. F. R. Sborlini ◽  
P. Banerjee ◽  
S. Catani ◽  
A. L. Cherchiglia ◽  
...  

AbstractIn this manuscript, we report the outcome of the topical workshop: paving the way to alternative NNLO strategies (https://indico.ific.uv.es/e/WorkStop-ThinkStart_3.0), by presenting a discussion about different frameworks to perform precise higher-order computations for high-energy physics. These approaches implement novel strategies to deal with infrared and ultraviolet singularities in quantum field theories. A special emphasis is devoted to the local cancellation of these singularities, which can enhance the efficiency of computations and lead to discover novel mathematical properties in quantum field theories.


2005 ◽  
Vol 20 (16) ◽  
pp. 3777-3782 ◽  
Author(s):  
IVAN VITEV

The status of RHIC theory and phenomenology is reviewed with an emphasis on the indications for the creation of a new deconfined state of matter. The critical role of high energy nuclear physics in the development of theoretical tools that address various aspects of the QCD many body dynamics is highlighted. The perspectives for studying nuclear matter under even more extreme conditions at the LHC and the overlap with high energy physics is discussed.


2021 ◽  
Vol 12 (2) ◽  
pp. 35-47
Author(s):  
Vitaly Pronskikh

The scientific community engaged in research practices of high-energy physics in megascience laboratories is constituted by various subcommunities. These subcommittees are involved in engineering activities and preoccupied by phenomenal analyses. In recent decades, interdisciplinary accelerator and detector researchers, whose work is rooted in engineering, have replaced the experimentalists and instrumentalists of the 1970s; however, the role of pure theorists has remained essentially unchanged. In this article, the author clarifies the roles and specializations of these groups and explicate community members' blurred professional identities; the emphasis lies on engineering specialists and experimentalists. This research also attempts to clarify the reasons for the substantial imbalance of prestige among groups and how it is associated with access to highly valued epistemic practices such as articulating statements regarding natural phenomena. This paper applies an ethical theory framework to reveal how the lack of access to phenomenal knowledge expression—despite mediated contribution to knowledge production—creates participatory epistemic injustice. Finally, the author suggests ways to address this problem.


Sign in / Sign up

Export Citation Format

Share Document