The Hamiltonian & Phase Space

Author(s):  
Peter Mann

This chapter discusses the Hamiltonian and phase space. Hamilton’s equations can be derived in several ways; this chapter follows two pathways to arrive at the same result, thus giving insight into the motivation for forming these equations. The importance of deriving the same result in several ways is that it shows that, in physics, there are often several mathematical avenues to go down and that approaching a problem with, say, the calculus of variations can be entirely as valid as using a differential equation approach. The chapter extends the arenas of classical mechanics to include the cotangent bundle momentum phase space in addition to the tangent bundle and configuration manifold, and discusses conjugate momentum. It also introduces the Hamiltonian as the Legendre transform of the Lagrangian and compares it to the Jacobi energy function.

1969 ◽  
Vol 12 (2) ◽  
pp. 209-212 ◽  
Author(s):  
J. E. Marsden

As is well known, there is an intimate connection between geodesic flows and Hamiltonian systems. In fact, if g is a Riemannian, or pseudo-Riemannian metric on a manifold M (we think of M as q-space or the configuration space), we may define a smooth function Tg on the cotangent bundle T*M (q-p-space, or the phase space). This function is the kinetic energy of q, and locally is given by


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Javier Pérez Álvarez

AbstractThe Lagrange–Charpit theory is a geometric method of determining a complete integral by means of a constant of the motion of a vector field defined on a phase space associated to a nonlinear PDE of first order. In this article, we establish this theory on the symplectic structure of the cotangent bundle $$T^{*}Q$$ T ∗ Q of the configuration manifold Q. In particular, we use it to calculate explicitly isotropic submanifolds associated with a Hamilton–Jacobi equation.


1994 ◽  
Vol 09 (29) ◽  
pp. 2727-2732 ◽  
Author(s):  
DEBENDRANATH SAHOO ◽  
M. C. VALSAKUMAR

We investigate the problem of quantization of Nambu mechanics — a problem posed by Nambu [Phys. Rev.D7, 2405 (1973)] — along the line of Wigner–Weyl–Moyal (WWM) phase-space quantization of classical mechanics and show that the quantum analog of Nambu mechanics does not exist.


2000 ◽  
Vol 159 ◽  
pp. 1-24 ◽  
Author(s):  
Masayuki Henmi ◽  
Ryoichi Kobayashi

The concept of the canonical divergence is defined for dually flat statistical manifolds in terms of the Legendre transform between dual affine coordinates. In this article, we introduce a new two point function defined for any triple (g,∇, ∇*) of a Riemannian metric g and two affine connections ∇ and ∇*. We show that this interprets the canonical divergence without refering to the existence of special coordinates (dual affine coordinates) but in terms of only classical mechanics concerning ∇- and ∇*-geodesics. We also discuss the properties of the two point function and show that this shares some important properties with the canonical divergence defined on dually flat statistical manifolds.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012158
Author(s):  
N V Larionov

Abstract The model of a single-emitter laser generating in the regime of small number of photons in the cavity mode is theoretically investigated. Based on a system of equations for different moments of the field operators the analytical expressions for mean photon number and photon number variance are obtained. Using the master equation approach the differential equation for the phase-averaged quasi-probability Q is derived. For some limiting cases the exact solutions of this equation are found.


Sign in / Sign up

Export Citation Format

Share Document