scholarly journals Non-Smooth Geodesic Flows and Classical Mechanics

1969 ◽  
Vol 12 (2) ◽  
pp. 209-212 ◽  
Author(s):  
J. E. Marsden

As is well known, there is an intimate connection between geodesic flows and Hamiltonian systems. In fact, if g is a Riemannian, or pseudo-Riemannian metric on a manifold M (we think of M as q-space or the configuration space), we may define a smooth function Tg on the cotangent bundle T*M (q-p-space, or the phase space). This function is the kinetic energy of q, and locally is given by

Author(s):  
Peter Mann

This chapter discusses the Hamiltonian and phase space. Hamilton’s equations can be derived in several ways; this chapter follows two pathways to arrive at the same result, thus giving insight into the motivation for forming these equations. The importance of deriving the same result in several ways is that it shows that, in physics, there are often several mathematical avenues to go down and that approaching a problem with, say, the calculus of variations can be entirely as valid as using a differential equation approach. The chapter extends the arenas of classical mechanics to include the cotangent bundle momentum phase space in addition to the tangent bundle and configuration manifold, and discusses conjugate momentum. It also introduces the Hamiltonian as the Legendre transform of the Lagrangian and compares it to the Jacobi energy function.


1955 ◽  
Vol 51 (3) ◽  
pp. 469-475
Author(s):  
Edgar B. Schieldrop

1. A particle with mass m and coordinates x1x2, x3 relative to a set of rectangular axes fixed in Newtonian space is moving in a field of conservative forces with a potential energy V(x1, x2, x3) and a kinetic energyThe equations of motion, written(representing the three equations i = l, i = 2, i = 3 in a way to be used in this paper), constitute, as they stand, a sufficient condition in order to ensurein the sense that the Hamiltonian integral has a stationary value if the actual motion is compared with neighbouring motions with the same terminal positions and the same terminal values of the time as in the actual motion.


1979 ◽  
Vol 85 (1) ◽  
pp. 125-142
Author(s):  
J. P. Cleave

Although integrable Hamiltonian systems are non-generic (Robinson (13)) they have some importance in classical mechanics, e.g. the two-body problem, a free rigid body not subject to a gravitational field, the Toda lattice (Moser(12)). Arnol'd (cf. (2) and (1), appendix 26) proved that under quite general conditions action-angle coordinates can be introduced. Accordingly we consider a fixed system with n degrees of freedom in the standard formwhere H0 is a smooth function of the action variables Li only and I ∈ I and I is an open set of n-tuples of positive reals. now subjected to a periodic impressed force, the resulting system, , being determined by a small, periodic perturbation of the energy functionwhere e is a small positive real and K(c, I; α0, α1, …, an) is a smooth function of parameters c ranging over a smooth r-manifold E, I ∈ I, and K has period 2π in each of the angles αi, i.e. (α0, …, αn) ∈ Tn (n-torus). The purpose of this paper is to define the forms of bifurcation of oscillations of the perturbed system (K):


2018 ◽  
Vol 14 (3) ◽  
pp. 5708-5733 ◽  
Author(s):  
Vyacheslav Michailovich Somsikov

The analytical review of the papers devoted to the deterministic mechanism of irreversibility (DMI) is presented. The history of solving of the irreversibility problem is briefly described. It is shown, how the DMI was found basing on the motion equation for a structured body. The structured body was given by a set of potentially interacting material points. The taking into account of the body’s structure led to the possibility of describing dissipative processes. This possibility caused by the transformation of the body’s motion energy into internal energy. It is shown, that the condition of holonomic constraints, which used for obtaining of the canonical formalisms of classical mechanics, is excluding the DMI in Hamiltonian systems. The concepts of D-entropy and evolutionary non-linearity are discussed. The connection between thermodynamics and the laws of classical mechanics is shown. Extended forms of the Lagrange, Hamilton, Liouville, and Schrödinger equations, which describe dissipative processes, are presented.


2015 ◽  
Vol 22 (04) ◽  
pp. 1550021 ◽  
Author(s):  
Fabio Benatti ◽  
Laure Gouba

When dealing with the classical limit of two quantum mechanical oscillators on a noncommutative configuration space, the limits corresponding to the removal of configuration-space noncommutativity and position-momentum noncommutativity do not commute. We address this behaviour from the point of view of the phase-space localisation properties of the Wigner functions of coherent states under the two limits.


Author(s):  
Shahriar Aslani ◽  
Patrick Bernard

Abstract In the study of Hamiltonian systems on cotangent bundles, it is natural to perturb Hamiltonians by adding potentials (functions depending only on the base point). This led to the definition of Mañé genericity [ 8]: a property is generic if, given a Hamiltonian $H$, the set of potentials $g$ such that $H+g$ satisfies the property is generic. This notion is mostly used in the context of Hamiltonians that are convex in $p$, in the sense that $\partial ^2_{pp} H$ is positive definite at each point. We will also restrict our study to this situation. There is a close relation between perturbations of Hamiltonians by a small additive potential and perturbations by a positive factor close to one. Indeed, the Hamiltonians $H+g$ and $H/(1-g)$ have the same level one energy surface, hence their dynamics on this energy surface are reparametrisation of each other, this is the Maupertuis principle. This remark is particularly relevant when $H$ is homogeneous in the fibers (which corresponds to Finsler metrics) or even fiberwise quadratic (which corresponds to Riemannian metrics). In these cases, perturbations by potentials of the Hamiltonian correspond, up to parametrisation, to conformal perturbations of the metric. One of the widely studied aspects is to understand to what extent the return map associated to a periodic orbit can be modified by a small perturbation. This kind of question depends strongly on the context in which they are posed. Some of the most studied contexts are, in increasing order of difficulty, perturbations of general vector fields, perturbations of Hamiltonian systems inside the class of Hamiltonian systems, perturbations of Riemannian metrics inside the class of Riemannian metrics, and Mañé perturbations of convex Hamiltonians. It is for example well known that each vector field can be perturbed to a vector field with only hyperbolic periodic orbits, this is part of the Kupka–Smale Theorem, see [ 5, 13] (the other part of the Kupka–Smale Theorem states that the stable and unstable manifolds intersect transversally; it has also been studied in the various settings mentioned above but will not be discussed here). In the context of Hamiltonian vector fields, the statement has to be weakened, but it remains true that each Hamiltonian can be perturbed to a Hamiltonian with only non-degenerate periodic orbits (including the iterated ones), see [ 11, 12]. The same result is true in the context of Riemannian metrics: every Riemannian metric can be perturbed to a Riemannian metric with only non-degenerate closed geodesics, this is the bumpy metric theorem, see [ 1, 2, 4]. The question was investigated only much more recently in the context of Mañé perturbations of convex Hamiltonians, see [ 9, 10]. It is proved in [ 10] that the same result holds: if $H$ is a convex Hamiltonian and $a$ is a regular value of $H$, then there exist arbitrarily small potentials $g$ such that all periodic orbits (including iterated ones) of $H+g$ at energy $a$ are non-degenerate. The proof given in [ 10] is actually rather similar to the ones given in papers on the perturbations of Riemannian metrics. In all these proofs, it is very useful to work in appropriate coordinates around an orbit segment. In the Riemannian case, one can use the so-called Fermi coordinates. In the Hamiltonian case, appropriate coordinates are considered in [ 10,Lemma 3.1] itself taken from [ 3, Lemma C.1]. However, as we shall detail below, the proof of this Lemma in [ 3], Appendix C, is incomplete, and the statement itself is actually wrong. Our goal in the present paper is to state and prove a corrected version of this normal form Lemma. Our proof is different from the one outlined in [ 3], Appendix C. In particular, it is purely Hamiltonian and does not rest on the results of [ 7] on Finsler metrics, as [ 3] did. Although our normal form is weaker than the one claimed in [ 10], it is actually sufficient to prove the main results of [ 6, 10], as we shall explain after the statement of Theorem 1, and probably also of the other works using [ 3, Lemma C.1].


1994 ◽  
Vol 09 (29) ◽  
pp. 2727-2732 ◽  
Author(s):  
DEBENDRANATH SAHOO ◽  
M. C. VALSAKUMAR

We investigate the problem of quantization of Nambu mechanics — a problem posed by Nambu [Phys. Rev.D7, 2405 (1973)] — along the line of Wigner–Weyl–Moyal (WWM) phase-space quantization of classical mechanics and show that the quantum analog of Nambu mechanics does not exist.


2000 ◽  
Vol 159 ◽  
pp. 1-24 ◽  
Author(s):  
Masayuki Henmi ◽  
Ryoichi Kobayashi

The concept of the canonical divergence is defined for dually flat statistical manifolds in terms of the Legendre transform between dual affine coordinates. In this article, we introduce a new two point function defined for any triple (g,∇, ∇*) of a Riemannian metric g and two affine connections ∇ and ∇*. We show that this interprets the canonical divergence without refering to the existence of special coordinates (dual affine coordinates) but in terms of only classical mechanics concerning ∇- and ∇*-geodesics. We also discuss the properties of the two point function and show that this shares some important properties with the canonical divergence defined on dually flat statistical manifolds.


2004 ◽  
Vol 19 (15) ◽  
pp. 2473-2493 ◽  
Author(s):  
MAURICIO MONDRAGÓN ◽  
MERCED MONTESINOS

The various phase spaces involved in the dynamics of parametrized nonrelativistic Hamiltonian systems are displayed by using Crnkovic and Witten's covariant canonical formalism. It is also pointed out that in Dirac's canonical formalism there exists a freedom in the choice of the symplectic structure on the extended phase space and in the choice of the equations that define the constraint surface with the only restriction that these two choices combine in such a way that any pair (of these two choices) generates the same gauge transformation. The consequence of this freedom on the algebra of observables is also discussed.


Sign in / Sign up

Export Citation Format

Share Document