Orbitofrontal cortex processing: neurophysiology and neuroimaging

2019 ◽  
pp. 17-129
Author(s):  
Edmund T. Rolls

The functioning of the orbitofrontal cortex is described. It is shown that it receives information about what stimulus is present from the sensory pathways, and represents this in terms of its reward value. There are reward outcome neurons (responding to taste and pleasant and unpleasant touch); expected value neurons (responding to visual stimuli according to the expected reward that they predict); and non-reward 'error' neurons that respond when an expected reward is less than expected. There are also neurons that respond to face identity and face expression, and to vocalization. The medial orbitofrontal cortex represents rewards and its activations are related to the pleasantness of stimuli. The lateral orbitofrontal cortex represents punishers and not receiving expected rewards (non-reward). Economic reward value is represented. An anterior region, the ventromedial prefrontal cortex, is implicated in decision-making between rewards of different value. The orbitofrontal cortex represents the reward and punishment value of stimuli, and not actions. Outputs of the orbitofrontal cortex to the cingulate cortex are involved in learning what actions to take to obtain rewards; and to the striatum for stimulus-response, habit, learning.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Luca F. Kaiser ◽  
Theo O. J. Gruendler ◽  
Oliver Speck ◽  
Lennart Luettgau ◽  
Gerhard Jocham

AbstractIn a dynamic world, it is essential to decide when to leave an exploited resource. Such patch-leaving decisions involve balancing the cost of moving against the gain expected from the alternative patch. This contrasts with value-guided decisions that typically involve maximizing reward by selecting the current best option. Patterns of neuronal activity pertaining to patch-leaving decisions have been reported in dorsal anterior cingulate cortex (dACC), whereas competition via mutual inhibition in ventromedial prefrontal cortex (vmPFC) is thought to underlie value-guided choice. Here, we show that the balance between cortical excitation and inhibition (E/I balance), measured by the ratio of GABA and glutamate concentrations, plays a dissociable role for the two kinds of decisions. Patch-leaving decision behaviour relates to E/I balance in dACC. In contrast, value-guided decision-making relates to E/I balance in vmPFC. These results support mechanistic accounts of value-guided choice and provide evidence for a role of dACC E/I balance in patch-leaving decisions.


2018 ◽  
Vol 29 (10) ◽  
pp. 4277-4290 ◽  
Author(s):  
Patrick S Hogan ◽  
Joseph K Galaro ◽  
Vikram S Chib

Abstract The perceived effort level of an action shapes everyday decisions. Despite the importance of these perceptions for decision-making, the behavioral and neural representations of the subjective cost of effort are not well understood. While a number of studies have implicated anterior cingulate cortex (ACC) in decisions about effort/reward trade-offs, none have experimentally isolated effort valuation from reward and choice difficulty, a function that is commonly ascribed to this region. We used functional magnetic resonance imaging to monitor brain activity while human participants engaged in uncertain choices for prospective physical effort. Our task was designed to examine effort-based decision-making in the absence of reward and separated from choice difficulty—allowing us to investigate the brain’s role in effort valuation, independent of these other factors. Participants exhibited subjectivity in their decision-making, displaying increased sensitivity to changes in subjective effort as objective effort levels increased. Analysis of blood-oxygenation-level dependent activity revealed that the ventromedial prefrontal cortex (vmPFC) encoded the subjective valuation of prospective effort, and ACC activity was best described by choice difficulty. These results provide insight into the processes responsible for decision-making regarding effort, partly dissociating the roles of vmPFC and ACC in prospective valuation of effort and choice difficulty.


2019 ◽  
Author(s):  
Bhargav Teja Nallapu ◽  
Frédéric Alexandre

AbstractIn the context of flexible and adaptive animal behavior, the orbitofrontal cortex (OFC) is found to be one of the crucial regions in the prefrontal cortex (PFC) influencing the downstream processes of decision-making and learning in the sub-cortical regions. Although OFC has been implicated to be important in a variety of related behavioral processes, the exact mechanisms are unclear, through which the OFC encodes or processes information related to decision-making and learning. Here, we propose a systems-level view of the OFC, positioning it at the nexus of sub-cortical systems and other prefrontal regions. Particularly we focus on one of the most recent implications of neuroscientific evidences regarding the OFC - possible functional dissociation between two of its sub-regions : lateral and medial. We present a system-level computational model of decision-making and learning involving the two sub-regions taking into account their individual roles as commonly implicated in neuroscientific studies. We emphasize on the role of the interactions between the sub-regions within the OFC as well as the role of other sub-cortical structures which form a network with them. We leverage well-known computational architecture of thalamo-cortical basal ganglia loops, accounting for recent experimental findings on monkeys with lateral and medial OFC lesions, performing a 3-arm bandit task. First we replicate the seemingly dissociate effects of lesions to lateral and medial OFC during decision-making as a function of value-difference of the presented options. Further we demonstrate and argue that such an effect is not necessarily due to the dissociate roles of both the subregions, but rather a result of complex temporal dynamics between the interacting networks in which they are involved.Author summaryWe first highlight the role of the Orbitofrontal Cortex (OFC) in value-based decision making and goal-directed behavior in primates. We establish the position of OFC at the intersection of cortical mechanisms and thalamo-basal ganglial circuits. In order to understand possible mechanisms through which the OFC exerts emotional control over behavior, among several other possibilities, we consider the case of dissociate roles of two of its topographical subregions - lateral and medial parts of OFC. We gather predominant roles of each of these sub-regions as suggested by numerous experimental evidences in the form of a system-level computational model that is based on existing neuronal architectures. We argue that besides possible dissociation, there could be possible interaction of these sub-regions within themselves and through other sub-cortical structures, in distinct mechanisms of choice and learning. The computational framework described accounts for experimental data and can be extended to more comprehensive detail of representations required to understand the processes of decision-making, learning and the role of OFC and subsequently the regions of prefrontal cortex in general.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Sean E Cavanagh ◽  
Joni D Wallis ◽  
Steven W Kennerley ◽  
Laurence T Hunt

Correlates of value are routinely observed in the prefrontal cortex (PFC) during reward-guided decision making. In previous work (Hunt et al., 2015), we argued that PFC correlates of chosen value are a consequence of varying rates of a dynamical evidence accumulation process. Yet within PFC, there is substantial variability in chosen value correlates across individual neurons. Here we show that this variability is explained by neurons having different temporal receptive fields of integration, indexed by examining neuronal spike rate autocorrelation structure whilst at rest. We find that neurons with protracted resting temporal receptive fields exhibit stronger chosen value correlates during choice. Within orbitofrontal cortex, these neurons also sustain coding of chosen value from choice through the delivery of reward, providing a potential neural mechanism for maintaining predictions and updating stored values during learning. These findings reveal that within PFC, variability in temporal specialisation across neurons predicts involvement in specific decision-making computations.


Brain ◽  
2008 ◽  
Vol 131 (5) ◽  
pp. 1311-1322 ◽  
Author(s):  
L. Clark ◽  
A. Bechara ◽  
H. Damasio ◽  
M. R. F. Aitken ◽  
B. J. Sahakian ◽  
...  

2008 ◽  
Vol 363 (1503) ◽  
pp. 2557-2565 ◽  
Author(s):  
R.J.R Blair

The current paper examines the functional contributions of the amygdala and ventromedial prefrontal cortex (vmPFC) and the evidence that the functioning of these systems is compromised in individuals with psychopathy. The amygdala is critical for the formation of stimulus–reinforcement associations, both punishment and reward based, and the processing of emotional expressions. vmPFC is critical for the representation of reinforcement expectancies and, owing to this, decision making. Neuropsychological and neuroimaging data from individuals with psychopathy are examined. It is concluded that these critical functions of the amygdala and vmPFC, and their interaction, are compromised in individuals with the disorder. It is argued that these impairments lead to the development of psychopathy.


Sign in / Sign up

Export Citation Format

Share Document