Isomorphous replacement techniques

Author(s):  
Carmelo Giacovazzo

The isomorphous replacement method is a very old technique, used incidentally by Bragg to solve NaCl and KCl structures: it was later formulated in a more general way by Robertson (1935, 1936) and by Robertson and Woodward (1937). Its modern formulation is essentially due to Green et al. (1954) and to Bragg and Perutz (1954), who applied the method to haemoglobin. The technique has made possible the determination of the first three macromolecular structures, myoglobin, haemoglobin, and lysozyme. The approach may be summarized as follows. Suppose that the target structure is difficult to solve (e.g. it is a medium-sized structure, resistant to any phasing attempt, or it is a protein with bad data resolution) and we want to adopt isomorphous replacement techniques. Then we should perform the following steps: (a) Collect the diffraction data of the target structure; in the following we will suppose that it is the native protein. (b) Crystallize a new compound in which one or more heavy atoms are incorporated into the target structure. This new compound is called derivative. (c) Check if the operations in (b) heavily disturb the target structure. If not, the derivative is called isomorphous; then, only local (in the near vicinity of the binding site) structural modifications are induced by the heavy atom addition. Non-isomorphous derivative data are useless. (d) Use the two sets of diffraction data, say set {|FP|} of the target structure and set {|Fd|} of the isomorphous derivative, to solve the target structure. The above case is referred to as SIR (single isomorphous replacement). The reader should notice that redundant experimental information is available; indeed, two experimental sets of diffraction data relative to two isomorphous structures may be simultaneously used for solving the native protein. The redundancy of the experimental information allows crystal structure solution even if data resolution is far from being atomic (e.g. also when RES is about 3 or 4 Å, and even more in lucky cases). Imperfect isomorphism may hinder crystal structure solution. Then, more derivatives may be prepared; their diffraction data may be used in a combined way and may more easily lead the phasing process to success.

2016 ◽  
Vol 72 (3) ◽  
pp. 430-439 ◽  
Author(s):  
Armin Wagner ◽  
Ramona Duman ◽  
Keith Henderson ◽  
Vitaliy Mykhaylyk

Structure solution based on the weak anomalous signal from native (protein and DNA) crystals is increasingly being attempted as part of synchrotron experiments. Maximizing the measurable anomalous signal by collecting diffraction data at longer wavelengths presents a series of technical challenges caused by the increased absorption of X-rays and larger diffraction angles. A new beamline at Diamond Light Source has been built specifically for collecting data at wavelengths beyond the capability of other synchrotron macromolecular crystallography beamlines. Here, the theoretical considerations in support of the long-wavelength beamline are outlined and the in-vacuum design of the endstation is discussed, as well as other hardware features aimed at enhancing the accuracy of the diffraction data. The first commissioning results, representing the first in-vacuum protein structure solution, demonstrate the promising potential of the beamline.


2013 ◽  
Vol 28 (S2) ◽  
pp. S470-S480 ◽  
Author(s):  
Anna Portell ◽  
Xavier Alcobé ◽  
Latévi M. Lawson Daku ◽  
Radovan Černý ◽  
Rafel Prohens

The crystal structure of the third polymorph of dibenzylsquaramide (Portell, A. et al., 2009), (fig. 1) has been determined from laboratory X-ray powder diffraction data by means of direct space methods using the computing program FOX. (Favre-Nicolin and Černý, 2002) The structure resolution has not been straightforward due to several difficulties on the indexing process and in the space group assignment. The asymmetric unit contains two different conformers, which has implied an additional difficulty during the Rietveld (Rietveld, 1969) refinement. All these issues together with particular structural features of disquaramides are discussed.


2007 ◽  
Vol 40 (3) ◽  
pp. 609-613 ◽  
Author(s):  
Maria C. Burla ◽  
Rocco Caliandro ◽  
Mercedes Camalli ◽  
Benedetta Carrozzini ◽  
Giovanni L. Cascarano ◽  
...  

IL MILIONEis a suite of computer programs devoted to protein crystal structure determination by X-ray crystallography. It may be used in the following key activities. (a)Ab initiophasing,viaPatterson or direct methods. The program may succeed even with structures with up to 6000 non-H atoms in the asymmetric unit, provided that atomic resolution is available, and with data at quasi-atomic resolution (1.4–1.5 Å). (b) Single or multiple isomorphous replacement, single- or multiple-wavelength anomalous diffraction, and single or multiple isomorphous replacement with anomalous scattering techniques. In the first step the program finds the heavy-atom/anomalous scatterer substructure, then automatically uses the above information to phase protein reflections. Phase extension and refinement are performed by electron density modification techniques. (c) Molecular replacement. The orientation and the location of the protein molecules are foundviareciprocal space methods. Phase extension and refinement are performed by electron density modification techniques. All the programs integrated intoIL MILIONEare controlled by means of a user-friendly graphical user interface, which is used to input data and to monitor intermediate and final results by means of real-time updated messages, diagrams and histograms.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1803-C1803
Author(s):  
Kamel El Omari ◽  
Oleg Iourin ◽  
Jan Kadlec ◽  
Geoff Sutton ◽  
Richard Fearn ◽  
...  

Single-wavelength anomalous dispersion of sulfur atoms (S-SAD) is an elegant phasing method to determine crystal structures that does not require heavy atom incorporation or selenomethionine derivatization. Nevertheless this technique has been limited by the paucity of the signal at usual X-ray wavelengths, requiring very accurate measurement of the anomalous differences. Here we report the data collection and structure solution of the N-terminal domain of the ectodomain of Hepatitis C virus (HCV) E1, from crystals that diffracted very weakly. By combining the data from 32 crystals it was possible to solve the sulfur substructure and calculate initial maps at 7Å resolution, and after density modification and phase extension, using a higher resolution native dataset, to 3.5Å resolution, model building was achievable. The crystal structure of the N-terminal domain of reveals a complex network of covalently linked intertwined homodimers that do not harbor the expected truncated class II fusion protein fold.


2018 ◽  
Vol 74 (a1) ◽  
pp. a300-a300
Author(s):  
Elena A. Kabova ◽  
Jason C. Cole ◽  
Oliver Korb ◽  
Adrian C. Williams ◽  
Kenneth Shankland

Author(s):  
Christoph Burmester ◽  
Kenneth C. Holmes ◽  
Rasmus R. Schröder

Electron crystallography of 2D protein crystals can yield models with atomic resolution by taking Fourier amplitudes from electron diffraction and phase information from processed images. Imaging at atomic resolution is more difficult than the recording of corresponding electron diffraction patterns. Therefore attempts have been made to recover phase information from diffraction data from 2-D and 3-D crystals by the method of isomorphous replacement using heavy atom labelled protein crystals. These experiments, however, have so far not produced usable phase information, partly because of the large experimental error in the spot intensities. Here we present electron diffraction data obtained from frozen hydrated 3-D protein crystals with an energy-filter microscope and a specially constructed Image Plate scanner which are of considerably better crystallographic quality (as evidenced in much smaller values for the crystallographic R-factors Rsym and Rmerge) than those reported before. The quality of this data shows that the method of isomorphous replacement could indeed be used for phase determination for diffraction data obtained from 3-D microcrystals by electron diffraction.


2017 ◽  
Vol 32 (S1) ◽  
pp. S110-S117 ◽  
Author(s):  
A. N. Zaloga ◽  
I. S. Yakimov ◽  
P. S. Dubinin

The paper describes an approach for automated crystal structure solution from powder diffraction data using the multi-population genetic algorithm (MPGA). The advantage of using co-evolution with the best individual exchange, compared with the using of the evolution with a single genetic algorithm without interpopulation exchange, is shown. As an example, the paper describes the use of MPGA for solving the [Pt(NH3)5Cl]Br3 crystal structure, having the tetragonal I41/a space group [a = 17.2587(5) Å, c = 15.1164(3) Å, Z = 16, unit-cell volume V = 4502.61(10) Å3]. The MPGA convergence charts and the atomic positions distribution maps of the MPGA populations are given. The description of the final structure solution is also shown.


Sign in / Sign up

Export Citation Format

Share Document