anomalous signal
Recently Published Documents


TOTAL DOCUMENTS

99
(FIVE YEARS 23)

H-INDEX

19
(FIVE YEARS 3)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Motoi Kimata ◽  
Norimasa Sasabe ◽  
Kensuke Kurita ◽  
Yuichi Yamasaki ◽  
Chihiro Tabata ◽  
...  

AbstractRecently found anomalous Hall, Nernst, magnetooptical Kerr, and spin Hall effects in the antiferromagnets Mn3X (X = Sn, Ge) are attracting much attention for spintronics and energy harvesting. Since these materials are antiferromagnets, the origin of these functionalities is expected to be different from that of conventional ferromagnets. Here, we report the observation of ferroic order of magnetic octupole in Mn3Sn by X-ray magnetic circular dichroism, which is only predicted theoretically so far. The observed signals are clearly decoupled with the behaviors of uniform magnetization, indicating that the present X-ray magnetic circular dichroism is not arising from the conventional magnetization. We have found that the appearance of this anomalous signal coincides with the time reversal symmetry broken cluster magnetic octupole order. Our study demonstrates that the exotic material functionalities are closely related to the multipole order, which can produce unconventional cross correlation functionalities.


Author(s):  
Kaushik S. Hatti ◽  
Airlie J. McCoy ◽  
Randy J. Read

SAD phasing can be challenging when the signal-to-noise ratio is low. In such cases, having an accurate estimate of the substructure content can determine whether or not the substructure of anomalous scatterer positions can successfully be determined. Here, a likelihood-based target function is proposed to accurately estimate the strength of the anomalous scattering contribution directly from the measured intensities, determining a complex correlation parameter relating the Bijvoet mates as a function of resolution. This gives a novel measure of the intrinsic anomalous signal. The SAD likelihood target function also accounts for correlated errors in the measurement of intensities from Bijvoet mates, which can arise from the effects of radiation damage. When the anomalous signal is assumed to come primarily from a substructure comprising one anomalous scatterer with a known value of f′′ and when the protein composition of the crystal is estimated correctly, the refined complex correlation parameters can be interpreted in terms of the atomic content of the primary anomalous scatterer before the substructure is known. The maximum-likelihood estimation of substructure content was tested on a curated database of 357 SAD cases with useful anomalous signal. The prior estimates of substructure content are highly correlated to the content determined by phasing calculations, with a correlation coefficient (on a log–log basis) of 0.72.


Author(s):  
Jia Q. Truong ◽  
Stephanie Nguyen ◽  
John B. Bruning ◽  
Keith E. Shearwin

The phase problem is a persistent bottleneck that impedes the structure-determination pipeline and must be solved to obtain atomic resolution crystal structures of macromolecules. Although molecular replacement has become the predominant method of solving the phase problem, many scenarios still exist in which experimental phasing is needed. Here, a proof-of-concept study is presented that shows the efficacy of using tetrabromoterephthalic acid (B4C) as an experimental phasing compound. Incorporating B4C into the crystal lattice using co-crystallization, the crystal structure of hen egg-white lysozyme was solved using MAD phasing. The strong anomalous signal generated by its four Br atoms coupled with its compatibility with commonly used crystallization reagents render B4C an effective experimental phasing compound that can be used to overcome the phase problem.


2021 ◽  
Author(s):  
Kaushik S Hatti ◽  
Airlie J McCoy ◽  
Randy J Read

AbstractSAD phasing can be challenging when the signal-to-noise ratio is low. In such cases, having an accurate estimate of substructure content can determine whether or not the substructure of anomalous scatterer positions can successfully be determined. We propose a likelihood-based target function to accurately estimate the strength of the anomalous scattering contribution directly from measured intensities, determining a complex correlation parameter relating the Bijvoet mates as a function of resolution. This gives a novel measure of intrinsic anomalous signal. The SAD likelihood target function also accounts for correlated errors in the measurement of intensities from Bijvoet mates, which can arise from the effects of radiation damage. When the anomalous signal is assumed to come primarily from a substructure comprised of one anomalous scatterer with a known value of f” and when the protein composition of the crystal is estimated correctly, the refined complex correlation parameters can be interpreted in terms of the atomic content of the primary anomalous scatterer, before the substructure is known. The maximum likelihood estimation of substructure content was tested on a curated database of 357 SAD cases with useful anomalous signal. The prior estimates of substructure content are highly correlated to the content determined by phasing calculations, with a correlation coefficient (on a log-log basis) of 0.72.SynopsisAn intensity-based likelihood method is provided to estimate scattering from an anomalous substructure considering the effect of measurement errors in Bijvoet pairs and correlations between those errors.


2020 ◽  
Vol 76 (10) ◽  
pp. 938-945
Author(s):  
Jian Yu ◽  
Akira Shinoda ◽  
Koji Kato ◽  
Isao Tanaka ◽  
Min Yao

The native SAD phasing method uses the anomalous scattering signals from the S atoms contained in most proteins, the P atoms in nucleic acids or other light atoms derived from the solution used for crystallization. These signals are very weak and careful data collection is required, which makes this method very difficult. One way to enhance the anomalous signal is to use long-wavelength X-rays; however, these wavelengths are more strongly absorbed by the materials in the pathway. Therefore, a crystal-mounting platform for native SAD data collection that removes solution around the crystals has been developed. This platform includes a novel solution-free mounting tool and an automatic robot, which extracts the surrounding solution, flash-cools the crystal and inserts the loop into a UniPuck cassette for use in the synchrotron. Eight protein structures (including two new structures) have been successfully solved by the native SAD method from crystals prepared using this platform.


2020 ◽  
Vol 76 (8) ◽  
pp. 790-801 ◽  
Author(s):  
Joshua M. Lawrence ◽  
Julien Orlans ◽  
Gwyndaf Evans ◽  
Allen M. Orville ◽  
James Foadi ◽  
...  

In this article, a new approach to experimental phasing for macromolecular crystallography (MX) at synchrotrons is introduced and described for the first time. It makes use of automated robotics applied to a multi-crystal framework in which human intervention is reduced to a minimum. Hundreds of samples are automatically soaked in heavy-atom solutions, using a Labcyte Inc. Echo 550 Liquid Handler, in a highly controlled and optimized fashion in order to generate derivatized and isomorphous crystals. Partial data sets obtained on MX beamlines using an in situ setup for data collection are processed with the aim of producing good-quality anomalous signal leading to successful experimental phasing.


2020 ◽  
Vol 76 (7) ◽  
pp. 636-652 ◽  
Author(s):  
Greta M. Assmann ◽  
Meitian Wang ◽  
Kay Diederichs

Phasing by single-wavelength anomalous diffraction (SAD) from multiple crystallographic data sets can be particularly demanding because of the weak anomalous signal and possible non-isomorphism. The identification and exclusion of non-isomorphous data sets by suitable indicators is therefore indispensable. Here, simple and robust data-selection methods are described. A multi-dimensional scaling procedure is first used to identify data sets with large non-isomorphism relative to clusters of other data sets. Within each cluster that it identifies, further selection is based on the weighted ΔCC1/2, a quantity representing the influence of a set of reflections on the overall CC1/2 of the merged data. The anomalous signal is further improved by optimizing the scaling protocol. The success of iterating the selection and scaling steps was verified by substructure determination and subsequent structure solution. Three serial synchrotron crystallography (SSX) SAD test cases with hundreds of partial data sets and one test case with 62 complete data sets were analyzed. Structure solution was dramatically simplified with this procedure, and enabled solution of the structures after a few selection/scaling iterations. To explore the limits, the procedure was tested with much fewer data than originally required and could still solve the structure in several cases. In addition, an SSX data challenge, minimizing the number of (simulated) data sets necessary to solve the structure, was significantly underbid.


2020 ◽  
Vol 1568 ◽  
pp. 012027
Author(s):  
C N Dewi ◽  
F Febriani ◽  
T Anggono ◽  
Syuhada ◽  
B Soedjatmiko ◽  
...  

2020 ◽  
Author(s):  
Dumitru Stanica ◽  
Dragos Armand Stanica

<p>A catastrophic earthquake of magnitude Mw6.4 generated at 10km depth hit coastal zone of Albania on November 26-th 2019, at 2h54min UTC. The earthquake was intensively felt at about 34km far, in Tirana City, where a lot of damages have occurred. Consequently, in order to identify the anomalous geomagnetic signature before the onset of this earthquake, we retrospectively analyzed the data collected on the interval October 15–November 30, 2019 at the two geomagnetic observatories: Panagjurishte (PAG)-Bulgaria and Surlari (SUA)-Romania, the last one taken as reference. The pre-seismic geomagnetic anomalous signal is postulated to be due to the electrical conductivity changes, most probably associated with the earthquake-induced tectonic stress, followed by rupture and electrochemical processes deployed along the Adria plate subduction zone. To identify a pre-seismic geomagnetic signal related to this earthquake we used: (i) polarization parameter BPOL which should be time invariant in non-seismic condition and it becomes unstable before the onset a seismic event; (ii) Strain effect-related to the anomalous geomagnetic signals identification. Thus, the daily mean distributions of the BPOL and its standard deviations (SD) are performed for the both observation site (PAG and SUA) by using the FFT band-pass filter analysis in the ULF range (0.001Hz - 0.0083Hz). Further on, a statistical analysis based on a standardized random variable equation was applied for the two particular cases: a) the assessment of the singularity for anomalous signal, related to the Mw6.4earthquake, observed on the daily mean distributions of the BPOL*(PAG) and BPOL*(SUA); b) the differentiation of the transient local anomalies associated with Mw6.4earthquake from the internal and external parts of the geomagnetic field, taking Geomagnetic Observatory (SUA) as reference, and the result is presented as daily mean distribution of the BPOL*(PAG-SUA). Finally, on the BPOL*(PAG-SUA) time series, carried out on the interval 1-30 November 2019, a very clear anomaly of maximum greater than 2.5 SD was detected on November 22, what means a lead time of 4 days before the onset of Mw6.4earthquake. In consequence, all mentioned results could offer opportunities to develop new tools for early detection of geomagnetic anomalies related to major seismic events. </p>


Sign in / Sign up

Export Citation Format

Share Document