Enantioselective Construction of Alkylated Stereogenic Centers

Author(s):  
Douglass Taber

Carsten Bolm of RWTH Aachen developed (Angew. Chem. Int. Ed. 2008, 47, 8920) an Ir catalyst that effected hydrogenation of trisubstituted enones such as 1 with high ee. Benjamin List of the Max-Planck-Institut Mülheim devised (J. Am. Chem. Soc. 2008, 130, 13862) an organocatalyst for the enantioselective reduction of nitro acrylates such as 3 with the Hantzsch ester 4. Gregory C. Fu of MIT optimized (J. Am. Chem. Soc. 2008, 130, 12645) a Ni catalyst for the enantioselective arylation of propargylic halides such as 6. Both enantiomers of 6 were converted to the single enantiomer of 8. Michael C. Willis of the University of Oxford established (J. Am. Chem. Soc. 2008, 130, 17232) that hydroacylation with a Rh catalyst was selective for one enantiomer of the allene 9, delivering 11 in high ee. Similarly, José Luis García Ruano of the Universidad Autónoma de Madrid found (Angew. Chem. Int. Ed. 2008, 47, 6836) that one enantiomer of racemic 13 reacted selectively with the enantiomerically- pure anion 12, to give 14 in high diastereomeric excess. Ei-chi Negishi of Purdue University described (Organic Lett. 2008, 10, 4311) the Zr-catalyzed asymmetric carboalumination (ZACA reaction) of the alkene 15 to give the useful chiron 16. David W. C. MacMillan of Princeton University developed (Science 2008, 322, 77) an intriguing visible light-powered oxidation-reduction approach to enantioselective aldehyde alkylation. The catalytic chiral secondary amine adds to the aldehyde to form an enamine, that then couples with the radical produced by reduction of the haloester. Two other alkylations were based on readily-available chiral auxiliaries. Philippe Karoyan of the Université Pierre et Marie Curie observed (Tetrahedron Lett . 2008, 49, 4704) that the acylated Oppolzer camphor sultam 20 condensed with the Mannich reagent 21 to give 22 as a single diastereomer. Andrew G. Myers of Harvard University developed the pseudoephedrine chiral auxiliary of 23 to direct the construction of ternary alkylated centers. He has now established (J. Am. Chem. Soc. 2008, 130, 13231) that further alkylation gave 24, having a quaternary alkylated center, in high diastereomeric excess.

Author(s):  
Douglass F. Taber

Control of the absolute configuration of adjacent alkylated stereogenic centers is a classic challenge in organic synthesis. In the course of the synthesis of (–)-hybridalactone 4, Alois Fürstner of the Max-Planck-Institut Mülheim effected (J. Am. Chem. Soc. 2011, 133, 13471) catalytic enantioselective conjugate addition to the simple acceptor 1. The initial adduct, formed in 80% ee, could readily be recrystallized to high ee. In an alternative approach to high ee 2,3-dialkyl γ-lactones, David M. Hodgson of the University of Oxford cyclized (Org. Lett. 2011, 13, 5751) the alkyne 5 to an aldehyde, which was condensed with 6 to give 7. Coupling with 8 then delivered (+)-anthecotulide 9. The enantiomerically pure diol 10 is readily available from acetylacetone. Weiping Tang of the University of Wisconsin dissolved (Org. Lett. 2011, 13, 3664) the symmetry of 10 by Pd-mediated cyclocarbonylation. The conversion of the lactone 11 to (–)-kumausallene 12 was enabled by an elegant intramolecular bromoetherification. Shoji Kobayshi of the Osaka Institute of Technology developed (J. Org. Chem. 2011, 76, 7096) a powerful oxy-Favorskii rearrangement that enabled the preparation of both four-and five-membered rings with good diastereocontrol, as exemplified by the conversion of 13 to 14. With the electron-withdrawing ether oxygen adjacent to the ester carbonyl, Dibal reduction of 14 proceeded cleanly to the aldehyde. Addition of ethyl lithium followed by deprotection completed the synthesis of (±)-communiol E. En route to (–)-exiguolide 18, Karl A. Scheidt of Northwestern University showed (Angew. Chem. Int. Ed. 2011, 50, 9112) that 16 could be cyclized efficiently to 17. The cyclization may be assisted by a scaffolding effect from the dioxinone ring. Dimeric macrolides such as cyanolide A 21 are usually prepared by lactonization of the corresponding hydroxy acid. Scott D. Rychnovsky of the University of California Irvine devised (J. Am. Chem. Soc. 2011, 133, 9727) a complementary strategy, the double Sakurai dimerization of the silyl acetal 19 to 20.


Author(s):  
Douglass Taber

Benjamin List of the Max Planck Institute, Mülheim devised (J. Am. Chem. Soc. 2008, 130, 6070) a chiral primary amine salt that catalyzed the enantioselective epoxidation of cyclohexenone 1 . Larger ring and alkyl-substituted enones are also epoxidized with high ee. Three- and four-membered rings are versatile intermediates for further transformation. Tsutomu Katsuki of Kyushu University developed (Angew. Chem. Int. Ed. 2008, 47, 2450) an elegant Al(salalen) catalyst for the enantioselective Simmons-Smith cyclopropanation of allylic alcohols such as 3. Kazuaki Ishihara of Nagoya University found (J. Am. Chem. Soc. 2007, 129, 8930) chiral amine salts that effected enantioselective 2+2 cycloaddition of α-acyloxyacroleins such as 5 to alkenes to give the cyclobutane 7 with high enantio- and diastereocontrol. Gideon Grogan of the University of York overexpressed (Adv. Synth. Cat. 2008, 349, 916) the enzyme 6-oxocamphor hydrolase in E. coli . The 6-OCH so prepared converted prochiral diketones such as 8 to the cyclopentane 9 in high ee. Richard P. Hsung of the University of Wisconsin found (Organic Lett. 2008, 10, 661) that the carbene produced by oxidation of the ynamide 10 cyclized to 11 with high de. Teck-Peng Loh of Nanyang Technological University extended (J. Am. Chem. Soc. 2008, 130, 7194) butane-2,3-diol directed cyclization to the preparation of the cyclopentane 15. Note that sidechain relative configuration is also controlled. We established (J. Org. Chem. 2008, 73, 3467) that the thermal ene reaction of 17 delivered the tetrasubstituted cyclopentane 18 as a single diastereomer. Tony K. M. Shing of the Chinese University of Hong Kong devised (J. Org. Chem. 2007, 72, 6610) a simple protocol for the conversion of carbohydrate-derived lactones such as 19 to the highly-substituted, enantiomerically-pure cyclohexenone 21. Hiromichi Fujioka and Yasuyuki Kita of Osaka University established (Organic Lett. 2007, 9, 5605) a chiral diol-mediated conversion of the cyclohexadiene 22 to the diastereomerically pure cyclohexenone 24. Dirk Trauner, now of the University of Munich, reported (Organic Lett. 2008, 10, 149) an elegant assembly of the neuritogenic polyketide shimalactone A 28.


Author(s):  
Douglass F. Taber

Alois Fürstner of the Max-Planck-Institut Mülheim devised (Angew. Chem. Int. Ed. 2013, 52, 14050) a Ru catalyst for the trans- selective hydroboration of an alkyne 1 to 2. Qingbin Liu of Hebei Normal University and Chanjuan Xi of Tsinghua University coupled (Org. Lett. 2013, 15, 5174) the alkenyl zirconocene derived from 3 with an acyl azide to give the amide 4. Chulbom Lee of Seoul National University used (Angew. Chem. Int. Ed. 2013, 52, 10023) a Rh catalyst to convert a terminal alkyne 5 to the ester 6. Laura L. Anderson of the University of Illinois, Chicago devised (Org. Lett. 2013, 15, 4830) a protocol for the conversion of a ter­minal alkyne 7 to the α-amino aldehyde 9. Dewen Dong of the Changchun Institute of Applied Chemistry developed (J. Org. Chem. 2013, 78, 11956) conditions for the monohydrolysis of a bis nitrile 10 to the monoamide 11. Aiwen Lei of Wuhan University optimized (Chem. Commun. 2013, 49, 7923) a Ni catalyst for the conversion of the alkene 12 to the enamide 13. Kazushi Mashima of Osaka University optimized (Adv. Synth. Catal. 2013, 355, 3391) a boronic ester catalyst for the conversion of an amide 14 to the ester 15. Jean- François Paquin of the Université Laval prepared (Eur. J. Org. Chem. 2013, 4325) the amide 17 by coupling an amine with the activated intermediate from reaction of an acid 16 with Xtal- Fluor E. Steven Fletcher of the University of Maryland School of Pharmacy designed (Tetrahedron Lett. 2013, 54, 4624) the azodicarbonyl dimorpholide 18 as a reagent for the Mitsunobu coupling of 19 with 20. The reduced form of 18 was readily separated by extraction into water and reoxidized. Jens Deutsch of the Universität Rostock found (Chem. Eur. J. 2013, 19, 17702) simple ligands for the Ru-mediated borrowed hydro­gen conversion of an alcohol 22 to the amine 23. Ronald T. Raines of the University of Wisconsin devised (J. Am. Chem. Soc. 2013, 135, 14936) a phosphinoester for the efficient conversion in water of an azide 24 to the diazo 25.


Author(s):  
Douglass F. Taber

Chun-Bao Miao and Hai-Tao Yang of Changzhou University constructed (J. Org. Chem. 2011, 76, 9809) the oxetane 2 by exposing the Michael adduct 1 to I2 and air. Huanfeng Jiang of the South China University of Science and Technology carboxylated (Org. Lett. 2011, 13, 5520) the alkyne 3 in the presence of a nitrile to give the three-component coupled product 4. Alois Fürstner of the Max-Planck-Institut Mülheim cyclized (Angew. Chem. Int. Ed. 2011, 50, 7829) 5 with a Mo catalyst, released in situ from a stable precursor, to give 6 in high ee. Hiromichi Fujioka of Osaka University rearranged (Chem. Commun. 2011, 47, 9197) 7 to the cyclic aldehyde, largely as the less stable diastereomer 8. Edward A. Anderson of the University of Oxford cyclized (Angew. Chem. Int. Ed. 2011, 50, 11506) 9 to 10 with excellent stereochemical fidelity. Similarly, Michal Hocek of the Academy of Sciences of the Czech Republic, Andrei V. Malkov, now at Loughborough University, and Pavel Kocovsky of the University of Glasgow combined (J. Org. Chem. 2011, 76, 7781) the individual enantiomers of 11 and 12 to give 13 as single enantiomerically pure diastereomers. Daniel Romo of Texas A&M University cyclized (Angew. Chem. Int. Ed. 2011, 50, 7537) the bromo ester 14 to the lactone 15. Xin-Shan Ye of Peking University condensed (Synlett 2011, 2410) the sulfone 16 with 17 to give the sulfone 18, with high diastereocontrol. Jiyong Hong of Duke University found (Org. Lett. 2011, 13, 5816) that 19 could be cyclized to either diastereomer of 20 by judicious optimization of the reaction conditions. Stacey E. Brenner-Moyer of Brooklyn College showed (Org. Lett. 2011, 13, 6460) that cyclization of racemic 21 in the presence of 22 and the Hayashi catalyst delivered an ~1:1 mixture of 23 and 24, each with good stereocontrol. Kyoko Nakagawa-Goto of the University of North Carolina showed (Synlett 2011, 1413) that the MOM ether 25, prepared in high de by Evans alkylation, cyclized efficiently to 26. Armen Zakarian of the University of California Santa Barbara cyclized (Org. Lett. 2011, 13, 3636) 27, readily prepared in high ee by asymmetric Henry addition, to the enone 28.


1988 ◽  
Vol 27 (2) ◽  
pp. 190-197
Author(s):  
Thomas F. Mayer

Author(s):  
Douglass Taber

There continue to be new developments in transition metal- and lanthanide-mediated construction of carbocycles. Although a great deal has been published on the asymmetric cyclopropanation of styrene, relatively little had been reported for other classes of alkenes. Tae-Jeong Kim of Kyungpook National University has devised (Tetrahedron Lett. 2007, 48, 8014) a Ru catalyst for the cyclopropanation of simple α-olefins such as 1. X. Peter Zhang of the University of South Florida has developed (J. Am.Chem. Soc. 2007, 129, 12074) a Co catalyst for the cyclopropanation of alkenes such as 5 having electron-withdrawing groups. Alexandre Alexakis of the Université de Genève has reported(Angew. Chem. Int. Ed. 2007, 46, 7462) simple monophosphine ligands that enabled enantioselective conjugate addition to prochiral enones, even difficult substrates such as 8. Seunghoon Shin of Hanyang University has found (Organic Lett. 2007, 9, 3539) an Au catalyst that effected the diastereoselective cyclization of 10 to the cyclohexene 11, and Radomir N. Saicic of the University of Belgrade has carried out (Organic Lett. 2007, 9, 5063), via transient enamine formation, the diastereoselective cyclization of 12 to the cyclohexane 13. Alois Fürstner of the Max-Planck- Institut, Mülheim has devised (J. Am. Chem. Soc. 2007, 129, 14836) a Rh catalyst that cyclized the aldehyde 14 to the cycloheptenone 15. Some of the most exciting investigations reported in recent months have been directed toward the direct diastereo- and enantioselective preparation of polycarbocyclic products. Rai-Shung Liu of National Tsing-Hua University has extended (J. Org. Chem. 2007, 72, 567) the intramolecular Pauson-Khand cyclization to the epoxy enyne 16, leading to the 5-5 product 17. Michel R. Gagné of the University of North Carolina has devised (J. Am. Chem. Soc. 2007, 129, 11880) a Pt catalyst that smoothly cyclized the polyene 18 to the 6-6 product 19. Yoshihiro Sato of Hokkaido University and Miwako Mori of the Health Science University of Hokkaido have described (J. Am. Chem. Soc. 2007, 129, 7730) a Ru catalyst for the cyclization of 20 to the 5-6-5 product 21. Each of these processes proceeded with high diastereocontrol.


Author(s):  
Douglass F. Taber

Benjamin List of the Max-Planck-Institut, Mülheim, devised (J. Am. Chem. Soc. 2010, 132, 10227) a catalyst system for the stereocontrolled epoxidation of a trisubstituted alkenyl aldehyde 1. Takashi Ooi of Nagoya University effected (Angew. Chem. Int. Ed. 2010, 49, 7562; see also Org. Lett. 2010, 12, 4070) enantioselective Henry addition to an alkynyl aldehyde 3. Madeleine M. Joullié of the University of Pennsylvania showed (Org. Lett. 2010, 12, 4244) that an amine 7 added selectively to an alkynyl aziridine 6. Yutaka Ukaji and Katsuhiko Inomata of Kanazawa University developed (Chem. Lett. 2010, 39, 1036) the enantioselective dipolar cycloaddition of 9 with 10. K. C. Nicolaou of Scripps/La Jolla observed (Angew. Chem. Int. Ed. 2010, 49, 5875; see also J. Org. Chem. 2010, 75, 8658) that the allylic alcohol from enantioselective reduction of 12 could be hydrogenated with high diastereocontrol. Masamichi Ogasawara and Tamotsu Takahashi of Hokkaido University added (Org. Lett. 2010, 12, 5736) the allene 14 to the acetal 15 with substantial stereocontrol. Helen C. Hailes of University College London investigated (Chem. Comm. 2010, 46, 7608) the enzyme-mediated addition of 18 to racemic 17. Dawei Ma of the Shanghai Institute of Organic Chemistry, in the course of a synthesis of oseltamivir (Tamiflu), accomplished (Angew. Chem. Int. Ed. 2010, 49, 4656) the enantioselective addition of 21 to 20. Shigeki Matsunaga of the University of Tokyo and Masakatsu Shibasaki of the Institute of Microbial Chemistry developed (Org. Lett. 2010, 12, 3246) a Ni catalyst for the enantioselective addition of 23 to 24. Juthanat Kaeobamrung and Jeffrey W. Bode of ETH-Zurich and Marisa C. Kozlowski of the University of Pennsylvania devised (Proc. Natl. Acad. Sci. 2010, 107, 20661) an organocatalyst for the enantioselective addition of 27 to 26. Yihua Zhang of China Pharmaceutical University and Professor Ma effected (Tetrahedron Lett. 2010, 51, 3827) the related addition of 27 to 29. There have been scattered reports on the stereochemical course of the coupling of cyclic secondary organometallics. In a detailed study, Paul Knochel of Ludwig-Maximilians- Universität München showed (Nat. Chem. 2020, 2, 125) that equatorial bond formation dominated, exemplified by the conversion of 31 to 33.


Author(s):  
Douglass F. Taber

James A. Bull of Imperial College London prepared (J. Org. Chem. 2013, 78, 6632) the aziridine 2 with high diastereocontrol by adding the anion of diiodomethane to the imine 1. Karl Anker Jørgensen of Aarhus University observed (Chem. Commun. 2013, 49, 6382) high ee in the distal aziridination of 3 to give 4. Benito Alcaide of the Universidad Complutense de Madrid and Pedro Almendros of ICOQ- CSIC Madrid reduced (Adv. Synth. Catal. 2013, 355, 2089) the β-lactam 5 to the azetidine 6. Hiroaki Sasai of Osaka University added (Org. Lett. 2013, 15, 4142) the allenoate 8 to the imine 7, delivering the azetidine 9 in high ee. Tamio Hayashi of Kyoto University, the National University of Singapore, and A*STAR devised (J. Am. Chem. Soc. 2013, 135, 10990) a Pd catalyst for the enanti­oselective addition of the areneboronic acid 11 to the pyrroline 10 to give 12. Ryan A. Brawn of Pfizer (Org. Lett. 2013, 15, 3424) reported related results. Nicolai Cramer of the Ecole Polytechnique Fédérale de Lausanne developed (J. Am. Chem. Soc. 2013, 135, 11772) a Ni catalyst for the cyclization of the formamide 13 to the lactam 14. Andrew D. Smith of the University of St. Andrews used (Org. Lett. 2013, 15, 3472) an organocatalyst to cyclize 15 to 16. Jose L. Vicario of the Universidad del Pais Vasco effected (Synthesis 2013, 45, 2669) the multicomponent coupling of 17, 18, and 19, mediated by an organocatalyst, to construct 20 in high ee. André Beauchemin of the University of Ottawa explored (J. Org. Chem. 2013, 78, 12735) the thermal cyclization of ω-alkenyl hydroxyl amines such as 21. Abigail G. Doyle of Princeton University developed (Angew. Chem. Int. Ed. 2013, 52, 9153) a Ni catalyst for the enantioselective addition of aryl zinc bromides such as 24 to the pro­chiral 23, to give 25 in high ee. Dennis G. Hall of the University of Alberta developed (Angew. Chem. Int. Ed. 2013, 52, 8069) an in situ preparation of the allyl boronate 26 in high ee. Addition to the aldehyde 27 proceeded with high diasteroselectivity.


Author(s):  
Douglass F. Taber

Mei-Huey Lin of the National Changhua University of Education rearranged (J. Org. Chem. 2014, 79, 2751) the initial allene derived from 1 to the γ-chloroenone. Displacement with acetate followed by hydrolysis led to the furan 2. A. Stephen K. Hashmi of Ruprecht-Karls-Universität Heidelberg showed (Angew. Chem. Int. Ed. 2014, 53, 3715) that the Au-catalyzed conversion of the bis alkyne 3, mediated by 4, proceeded selectively to give 5. Tehshik P. Yoon of the University of Wisconsin used (Angew. Chem. Int. Ed. 2014, 53, 793) visible light with a Ru catalyst to rearrange the azide 6 to the pyrrole 7. Cheol-Min Park, now at UNIST, found (Chem. Sci. 2014, 5, 2347) that a Ni catalyst reorganized the methoxime 8 to the pyrrole 9. A Rh catalyst converted 8 to the corresponding pyridine (not illustrated). In the course of a synthesis of opioid ligands, Kenner C. Rice of the National Institute on Drug Abuse optimized (J. Org. Chem. 2014, 79, 5007) the preparation of the pyridine 11 from the alcohol 10. Vincent Tognetti and Cyrille Sabot of the University of Rouen heated (J. Org. Chem. 2014, 79, 1303) 12 and 13 under micro­wave irradiation to give the 3-hydroxy pyridine 14. Tomislav Rovis of Colorado State University prepared (J. Am. Chem. Soc. 2014, 136, 2735) the pyridine 17 by the Rh-catalyzed combination of 15 with 16. Fabien Gagosz of the Ecole Polytechnique rearranged (Angew. Chem. Int. Ed. 2014, 53, 4959) the azirine 18, readily available from the oxime of the β-keto ester, to the pyridine 19. Matthias Beller of the Universität Rostock used (Chem. Eur. J. 2014, 20, 1818) a Zn catalyst to mediate the opening of the epoxide 21 with the aniline 20. A Rh cata­lyst effected the oxidation and cyclization of the product amino alcohol to the indole 22. Sreenivas Katukojvala of the Indian Institute of Science Education & Research showed (Angew. Chem. Int. Ed. 2014, 53, 4076) that the diazo ketone 23 could be used to anneal a benzene ring onto the pyrrole 24, leading to the 2,7-disubstituted indole 25.


Author(s):  
Douglass F. Taber

John W. Wong of Pfizer and Kurt Faber of the University of Graz used (Adv. Synth. Catal. 2014, 356, 1878) a wild-type enzyme to reduce the nitrile 1 to 2 in high ee. Takafumi Yamagami of Mitsubishi Tanabe Pharma described (Org. Process Res. Dev. 2014, 18, 437) the practical diastereoselective coupling of the racemic acid 3 with the inexpensive pantolactone 4 to give, via the ketene, the ester 5 in high de. Takeshi Ohkuma of Hokkaido University devised (Org. Lett. 2014, 16, 808) a Ru/Li catalyst for the enantioselective addition of in situ generated HCN to an N-acyl pyrrole 6 to give 7 in high ee. Yujiro Hayashi of Tohoku University found (Chem. Lett. 2014, 43, 556) that an aldehyde 8 could be condensed with formalin, leading in high ee to the masked aldehyde 9. Stephen P. Fletcher of the University of Oxford prepared (Org. Lett. 2014, 16, 3288) the lactone 12 in high ee by adding an alkyl zirconocene, prepared from the alkene 11, to the unsaturated lactone 10. In a remarkable display of catalyst control, Masakatsu Shibasaki of the Institute of Microbial Chemistry and Shigeki Matsunaga of the University of Tokyo opened (J. Am. Chem. Soc. 2014, 136, 9190) the racemic aziridine 13 with malonate 14 using a bimetallic catalyst. One enantiomer of the aziridine was converted specifically to the branched product 15 in high ee. The other enantiomer of the aziridine was converted to the regioisomeric opening product. Kimberly S. Peterson of the University of North Carolina at Greensboro used (J. Org. Chem. 2014, 79, 2303) an enantiomerically-pure organophosphate to selec­tively deprotect the bis ester 16, leading to 17. Chunling Fu of Zhejiang University and Shengming Ma of the Shanghai Institute of Organic Chemistry showed (Chem. Commun. 2014, 50, 4445) that an organocatalyst could mediate the brominative oxi­dation of 18 to 19. The ee of the product was easily improved via selective crystalliza­tion of the derived dinitrophenylhydrazone. James P. Morken of Boston College developed (Org. Lett. 2014, 16, 2096) condi­tions for the allylation of an allylic acetate such as 20 with 21, to deliver the coupled product 22 with high maintenance of ee.


Sign in / Sign up

Export Citation Format

Share Document