The Effects of Light Intensity and Carbon Dioxide Concentration on the Growth of Chrysanthemum morifolium cv. Bright Golden Anne

1971 ◽  
Vol 35 (4) ◽  
pp. 899-914 ◽  
Author(s):  
A. P. HUGHES ◽  
K. E. COCKSHULL
2018 ◽  
Vol 227 ◽  
pp. 02008
Author(s):  
Qing Du ◽  
Yanhua Miao ◽  
Yunhui Zhang

In view of the problem that some chicken farms are susceptible to various bacteria and viruses due to poor breeding environment, this paper designs a chicken house environmental intelligent monitoring system based on single-chip microcomputer application to improve the chicken house environment. The system adopts STC89C52 single-chip microcomputer as the main control chip. The sensor collects information on the light intensity, temperature and humidity, and carbon dioxide concentration, and controls the exhaust fan and the illumination lamp, and the environmental parameters can be displayed on the display in real time.


In blue-green algae the hydrogen donors and carbon skeletons required in the fixation of elementary nitrogen may be supplied by the photosynthetic mechanism. Study of the kinetic relationships between the photosynthetic assimilation of carbon and the assimilation of nitrogen into the cell material of Anabaena cylindrica Lemm. has demonstrated correlations between the rates of the two processes consonant with the existence of such biochemical connexions. The effects of light intensity, carbon-dioxide concentration and nitrogen concentration were each studied at four different temperatures by determination of changes in amounts of cell carbon and cell nitrogen in cultures grown for 48 h. Temperature was found to have the most marked differential effect, both low and high temperatures depressing nitrogen assimilation to a greater extent than carbon assimilation. At any given temperature there was a close correlation between the rates of the two processes over a wide range of variation in other factors. Both carbon and nitrogen assimilation were found to be inhibited by relatively low concentrations of carbon dioxide. The rate of carbon assimilation per unit amount of cell nitrogen was found to be related in the usual way to light intensity, but to be reduced at low nitrogen concentrations. The relative rate of nitrogen assimilation was likewise found to be related in the expected way to nitrogen concentration but to increase with light intensity and to be reduced at carbon-dioxide concentrations limiting for carbon assimilation.


2017 ◽  
Vol 2017.70 (0) ◽  
pp. 508
Author(s):  
Takuma ISHIWATARI ◽  
Izuru SENAHA ◽  
Kazunari NAGAMATSU ◽  
Satoshi HIGAKI ◽  
Kouhei MATSUBARA

1972 ◽  
Vol 50 (4) ◽  
pp. 883-889 ◽  
Author(s):  
F. D. H. Macdowall

Marquis wheat was grown in growth rooms with four different concentrations of carbon dioxide and four to seven different intensities of light in a 16-h photoperiod at 25 °C. Growth was expressed quantitatively as the pseudo-first-order rate coefficient. Carbon dioxide stimulated growth, but the effect was greater the lower the light intensity in opposition to the known effect on photosynthesis. Carbon dioxide and light, in effect, did not influence the "rate" of growth of wheat additively but, rather, mutually compensated over a wide range. The growth coefficient of the roots was a little less than that of the shoots at all carbon dioxide concentrations and light intensities, probably owing to the cost of translocation. However, root growth benefited most from carbon dioxide enrichment at low light intensities. At intermediate light intensity there appeared to be a carbon dioxide concentration optimal for shoot growth. Carbon dioxide enrichment did not influence the maximum growth coefficient of Marquis wheat with respect to light intensity. The light-using efficiency of growth, calculated for vanishingly low light intensity at which it is maximal, was maximal for shoots at 1300 ppm CO2 but that for laminal area and root dry weight increased with CO2 to 2200 ppm at which the value for "leaves" was nearly fourfold that for roots. Unlike photosynthesis, the stimulation of growth by raised CO2 concentration was accomplished by increased efficiency of, and not capacity for, the net photosynthetic use of light.


Sign in / Sign up

Export Citation Format

Share Document