scholarly journals Endosperm-limited Brassicaceae Seed Germination: Abscisic Acid Inhibits Embryo-induced Endosperm Weakening of Lepidium sativum (cress) and Endosperm Rupture of Cress and Arabidopsis thaliana

2006 ◽  
Vol 47 (7) ◽  
pp. 864-877 ◽  
Author(s):  
Kerstin Müller ◽  
Stefanie Tintelnot ◽  
Gerhard Leubner-Metzger
2011 ◽  
Vol 35 (5) ◽  
pp. 952-965 ◽  
Author(s):  
CHIJUN LI ◽  
ZUOJUN LIU ◽  
QIRUI ZHANG ◽  
RUOZHONG WANG ◽  
LANGTAO XIAO ◽  
...  

2003 ◽  
Vol 13 (1) ◽  
pp. 17-34 ◽  
Author(s):  
Gerhard Leubner-Metzger

Abstractβ-1,3-Glucanase (βGlu) expression in seeds plays important roles in the regulation of seed germination, dormancy and in the defence against seed pathogens. A thick β-1,3-glucan layer is typical for the seed envelope of cucurbitaceous species, confers seed semipermeability and is degraded during germination. In many species with coat-imposed dormancy, the seed envelope confers a physical constraint to radicle emergence. In the solanaceous species, the micropylar endosperm and testa have this function, and endosperm weakening appears to be a prerequisite for germination. Class I βGlu is transcriptionally induced in the micropylar endosperm of tobacco, tomato and other solanaceous seeds just prior to radicle emergence. βGlu induction and germination are tightly linked in response to plant hormones and environmental factors, e.g. they are both promoted by gibberellins and inhibited by abscisic acid (ABA). Sense and antisense transformation of tobacco reveals two sites of βGlu action: after-ripening-mediated release of testa-imposed dormancy and endosperm rupture during germination. The use of an ABA-inducible chimeric sense-transgene resulted in overexpression of class I βGlu in seeds and provided direct evidence that βGlu contributes to endosperm rupture. A model integrating βGlu, seed dormancy, after-ripening and germination is presented, and possible mechanisms for βGlu action are discussed. It is proposed that βGlu not only helps defend seeds against pathogens, but is also a key factor in regulating coat-imposed dormancy and germination of seeds in response to environmental and hormonal cues.


2009 ◽  
Vol 21 (12) ◽  
pp. 3803-3822 ◽  
Author(s):  
Ada Linkies ◽  
Kerstin Müller ◽  
Karl Morris ◽  
Veronika Turečková ◽  
Meike Wenk ◽  
...  

2017 ◽  
Vol 17 (1) ◽  
Author(s):  
Baodi Bi ◽  
Jingliang Tang ◽  
Shuang Han ◽  
Jinggong Guo ◽  
Yuchen Miao

2012 ◽  
Vol 63 (14) ◽  
pp. 5337-5350 ◽  
Author(s):  
Antje Voegele ◽  
Kai Graeber ◽  
Krystyna Oracz ◽  
Danuše Tarkowská ◽  
Dominique Jacquemoud ◽  
...  

1994 ◽  
Vol 72 (7) ◽  
pp. 1009-1017 ◽  
Author(s):  
Ronald W. Wilen ◽  
Bruce E. Ewan ◽  
Lawrence V. Gusta

The possible interaction of the two growth regulators, abscisic acid and jasmonic acid, on the inhibition of seed germination and the induction of freezing tolerance in bromegrass (Bromus inermis Leyss) cell cultures was investigated. Both of these processes are known to be affected by exogenous abscisic acid. Alfalfa (Medicago sativa), cornflower (Centurae gynura), cress seed (Lepidium sativum), maize (Zea mays), and wheat (Triticum aestivum) seeds were treated with varying concentrations of abscisic acid and jasmonic acid, either alone or in combination. In all species, seed germination was inhibited by 10 μM abscisic acid at 23 °C. In contrast, at 23 °C, jasmonic acid was partially inhibitory only at 100 μM; however, 10 μM jasmonic acid inhibited germination in all species at 10 °C. Jasmonic acid in combination with abscisic acid resulted in a higher degree of germination inhibition at 23 °C in all species than either growth regulator applied separately. Treatment of a bromegrass suspension cell culture with 75 μM abscisic acid at 25 °C for 7 days increased the freezing tolerance from −10 °C to lower than −35 °C. In contrast, jasmonic acid (0.25–75 μM) had no detectable effect on freezing tolerance. Jasmonic acid in combination with suboptimal concentrations of abscisic acid, however, enhanced the abscisic acid-induced freezing tolerance in these cells. In contrast, a combination of 75 μM abscisic acid and 25 or 75 μM jasmonic acid reduced the freezing tolerance of these cells compared with treatment with abscisic acid alone. Key words: abscisic acid, freezing tolerance, germination, jasmonic acid.


2011 ◽  
Vol 49 (3) ◽  
pp. 357-362 ◽  
Author(s):  
Sophie Paradis ◽  
Ana Laura Villasuso ◽  
Susana Saez Aguayo ◽  
Régis Maldiney ◽  
Yvette Habricot ◽  
...  

2021 ◽  
Author(s):  
Jiuxiao Ruan ◽  
Huhui Chen ◽  
Tao Zhu ◽  
Yaoguang Yu ◽  
Yawen Lei ◽  
...  

Abstract In flowering plants, repression of the seed maturation program is essential for the transition from the seed to the vegetative phase, but the underlying mechanisms remain poorly understood. The B3-domain protein VIVIPAROUS1/ABSCISIC ACID-INSENSITIVE3-LIKE 1 (VAL1) is involved in repressing the seed maturation program. Here we uncovered a molecular network triggered by the plant hormone brassinosteroid (BR) that inhibits the seed maturation program during the seed-to-seedling transition in Arabidopsis (Arabidopsis thaliana). val1-2 mutant seedlings treated with a BR biosynthesis inhibitor form embryonic structures, whereas BR signaling gain-of-function mutations rescue the embryonic structure trait. Furthermore, the BR-activated transcription factors BRI1-EMS-SUPPRESSOR 1 and BRASSINAZOLE-RESISTANT 1 bind directly to the promoter of AGAMOUS-LIKE15 (AGL15), which encodes a transcription factor involved in activating the seed maturation program, and suppress its expression. Genetic analysis indicated that BR signaling is epistatic to AGL15 and represses the seed maturation program by downregulating AGL15. Finally, we showed that the BR-mediated pathway functions synergistically with the VAL1/2-mediated pathway to ensure the full repression of the seed maturation program. Together, our work uncovered a mechanism underlying the suppression of the seed maturation program, shedding light on how BR promotes seedling growth.


Sign in / Sign up

Export Citation Format

Share Document