scholarly journals Brassinosteroids repress the seed maturation program during the seed-to-seedling transition

2021 ◽  
Author(s):  
Jiuxiao Ruan ◽  
Huhui Chen ◽  
Tao Zhu ◽  
Yaoguang Yu ◽  
Yawen Lei ◽  
...  

Abstract In flowering plants, repression of the seed maturation program is essential for the transition from the seed to the vegetative phase, but the underlying mechanisms remain poorly understood. The B3-domain protein VIVIPAROUS1/ABSCISIC ACID-INSENSITIVE3-LIKE 1 (VAL1) is involved in repressing the seed maturation program. Here we uncovered a molecular network triggered by the plant hormone brassinosteroid (BR) that inhibits the seed maturation program during the seed-to-seedling transition in Arabidopsis (Arabidopsis thaliana). val1-2 mutant seedlings treated with a BR biosynthesis inhibitor form embryonic structures, whereas BR signaling gain-of-function mutations rescue the embryonic structure trait. Furthermore, the BR-activated transcription factors BRI1-EMS-SUPPRESSOR 1 and BRASSINAZOLE-RESISTANT 1 bind directly to the promoter of AGAMOUS-LIKE15 (AGL15), which encodes a transcription factor involved in activating the seed maturation program, and suppress its expression. Genetic analysis indicated that BR signaling is epistatic to AGL15 and represses the seed maturation program by downregulating AGL15. Finally, we showed that the BR-mediated pathway functions synergistically with the VAL1/2-mediated pathway to ensure the full repression of the seed maturation program. Together, our work uncovered a mechanism underlying the suppression of the seed maturation program, shedding light on how BR promotes seedling growth.

2020 ◽  
Vol 103 (5) ◽  
pp. 1679-1694 ◽  
Author(s):  
Ran Tian ◽  
Fangfang Wang ◽  
Qiaolin Zheng ◽  
Venus M. A. G. E. Niza ◽  
A. Bruce Downie ◽  
...  

Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1884
Author(s):  
Galina Smolikova ◽  
Ksenia Strygina ◽  
Ekaterina Krylova ◽  
Tatiana Leonova ◽  
Andrej Frolov ◽  
...  

Transition from seed to seedling is one of the critical developmental steps, dramatically affecting plant growth and viability. Before plants enter the vegetative phase of their ontogenesis, massive rearrangements of signaling pathways and switching of gene expression programs are required. This results in suppression of the genes controlling seed maturation and activation of those involved in regulation of vegetative growth. At the level of hormonal regulation, these events are controlled by the balance of abscisic acid and gibberellins, although ethylene, auxins, brassinosteroids, cytokinins, and jasmonates are also involved. The key players include the members of the LAFL network—the transcription factors LEAFY COTYLEDON1 and 2 (LEC 1 and 2), ABSCISIC ACID INSENSITIVE3 (ABI3), and FUSCA3 (FUS3), as well as DELAY OF GERMINATION1 (DOG1). They are the negative regulators of seed germination and need to be suppressed before seedling development can be initiated. This repressive signal is mediated by chromatin remodeling complexes—POLYCOMB REPRESSIVE COMPLEX 1 and 2 (PRC1 and PRC2), as well as PICKLE (PKL) and PICKLE-RELATED2 (PKR2) proteins. Finally, epigenetic methylation of cytosine residues in DNA, histone post-translational modifications, and post-transcriptional downregulation of seed maturation genes with miRNA are discussed. Here, we summarize recent updates in the study of hormonal and epigenetic switches involved in regulation of the transition from seed germination to the post-germination stage.


2017 ◽  
Vol 73 (3-4) ◽  
pp. 317-326 ◽  
Author(s):  
Anna Barczak-Brzyżek ◽  
Małgorzata Kiełkiewicz ◽  
Magdalena Górecka ◽  
Karol Kot ◽  
Barbara Karpińska ◽  
...  

2017 ◽  
Vol 114 (43) ◽  
pp. 11536-11541 ◽  
Author(s):  
Rajesh Kalladan ◽  
Jesse R. Lasky ◽  
Trent Z. Chang ◽  
Sandeep Sharma ◽  
Thomas E. Juenger ◽  
...  

Accumulation of the stress hormone abscisic acid (ABA) in response to drought and low water-potential controls many downstream acclimation mechanisms. However, mechanisms controlling ABA accumulation itself are less known. There was a 10-fold range of variation in ABA levels among nearly 300 Arabidopsis thaliana accessions exposed to the same low water-potential severity. Genome-wide association analysis (GWAS) identified genomic regions containing clusters of ABA-associated SNPs. Candidate genes within these regions included few genes with known stress or ABA-related function. The GWAS data were used to guide reverse genetic analysis, which found effectors of ABA accumulation. These included plasma-membrane–localized signaling proteins such as receptor-like kinases, aspartic protease, a putative lipid-binding START domain protein, and other membrane proteins of unknown function as well as a RING U-box protein and possible effect of tonoplast transport on ABA accumulation. Putative loss-of-function polymorphisms within the START domain protein were associated with climate factors at accession sites of origin, indicating its potential involvement in drought adaptation. Overall, using ABA accumulation as a basis for a combined GWAS–reverse genetic strategy revealed the broad natural variation in low-water-potential–induced ABA accumulation and was successful in identifying genes that affect ABA levels and may act in upstream drought-related sensing and signaling mechanisms. ABA effector loci were identified even when each one was of incremental effect, consistent with control of ABA accumulation being distributed among the many branches of ABA metabolism or mediated by genes with partially redundant function.


2015 ◽  
Vol 56 (6) ◽  
pp. 1215-1228 ◽  
Author(s):  
Thomas T. Roscoe ◽  
Jocelyne Guilleminot ◽  
Jean-Jacques Bessoule ◽  
Frédéric Berger ◽  
Martine Devic

FEBS Open Bio ◽  
2013 ◽  
Vol 3 (1) ◽  
pp. 321-327 ◽  
Author(s):  
Michael Krogh Jensen ◽  
Søren Lindemose ◽  
Federico de Masi ◽  
Julia J. Reimer ◽  
Michael Nielsen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document