scholarly journals Mechanistic Insight into Pentatricopeptide Repeat Proteins as Sequence-Specific RNA-Binding Proteins for Organellar RNAs in Plants

2012 ◽  
Vol 53 (7) ◽  
pp. 1171-1179 ◽  
Author(s):  
T. Nakamura ◽  
Y. Yagi ◽  
K. Kobayashi
2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Sam Manna ◽  
Jessica Brewster ◽  
Christian Barth

Pentatricopeptide repeat (PPR) proteins are RNA binding proteins with functions in organelle RNA metabolism. They are found in all eukaryotes but have been most extensively studied in plants. We report on the identification of 12 PPR-encoding genes in the genome of the protistDictyostelium discoideum, with potential homologs in other members of the same lineage and some predicted novel functions for the encoded gene products in protists. For one of the gene products, we show that it localizes to the mitochondria, and we also demonstrate that antisense inhibition of its expression leads to slower growth, a phenotype associated with mitochondrial dysfunction.


2020 ◽  
Author(s):  
Nikolay Manavski ◽  
Louis-Valentin Meteignier ◽  
Margarita Rojas ◽  
Andreas Brachmann ◽  
Alice Barkan ◽  
...  

ABSTRACTPentatricopeptide repeat (PPR) proteins are helical repeat-proteins that bind RNA in a modular fashion with a sequence-specificity that can be manipulated by the use of an amino acid code. As such, PPR repeats are promising scaffolds for the design of RNA binding proteins for synthetic biology applications. However, the in vivo functional capabilities of artificial PPR proteins built from consensus PPR motifs are just starting to be explored. Here, we report in vivo functions of an artificial PPR protein, dPPRrbcL, made of consensus PPR motifs that were designed to bind a sequence near the 5’ end of rbcL transcripts in Arabidopsis chloroplasts. We used a functional complementation assay to demonstrate that this protein bound its intended RNA target with specificity in vivo and that it substituted for a natural PPR protein by stabilizing processed rbcL mRNA. We targeted a second protein of analogous design to the petL 5’ UTR, where it substituted for the native stabilizing PPR protein PGR3, albeit inefficiently. These results showed that artificial PPRs can be engineered to functionally mimic the class of native PPR proteins that serve as physical barriers against exoribonucleases.


2016 ◽  
Vol 85 (4) ◽  
pp. 532-547 ◽  
Author(s):  
Shifeng Cheng ◽  
Bernard Gutmann ◽  
Xiao Zhong ◽  
Yongtao Ye ◽  
Mark F. Fisher ◽  
...  

2015 ◽  
Vol 71 (2) ◽  
pp. 196-208 ◽  
Author(s):  
Benjamin S. Gully ◽  
Kunal R. Shah ◽  
Mihwa Lee ◽  
Kate Shearston ◽  
Nicole M. Smith ◽  
...  

Proteins of the pentatricopeptide repeat (PPR) superfamily are characterized by tandem arrays of a degenerate 35-amino-acid α-hairpin motif. PPR proteins are typically single-stranded RNA-binding proteins with essential roles in organelle biogenesis, RNA editing and mRNA maturation. A modular, predictable code for sequence-specific binding of RNA by PPR proteins has recently been revealed, which opens the door to thede novodesign of bespoke proteins with specific RNA targets, with widespread biotechnological potential. Here, the design and production of a synthetic PPR protein based on a consensus sequence and the determination of its crystal structure to 2.2 Å resolution are described. The crystal structure displays helical disorder, resulting in electron density representing an infinite superhelical PPR protein. A structural comparison with related tetratricopeptide repeat (TPR) proteins, and with native PPR proteins, reveals key roles for conserved residues in directing the structure and function of PPR proteins. The designed proteins have high solubility and thermal stability, and can form long tracts of PPR repeats. Thus, consensus-sequence synthetic PPR proteins could provide a suitable backbone for the design of bespoke RNA-binding proteins with the potential for high specificity.


2019 ◽  
Vol 4 (Spring 2019) ◽  
Author(s):  
Nikita Tapiawala

RNA binding proteins control post-transcriptional aspects of gene regulation. While transcriptional control over the aging process has been well-established, less is known about post-transcriptional control over the aging process. We have used CRISPR/Cas9 genetics to study combinations of RNA binding proteins in C. elegan, a transparent nematode or roundworm one millimeter in length, and their role in aging. The manner in which the research was conducted was through experimental laboratory work in which the lifespan of the nematodes was monitored until their death. The three mutations affecting RNA binding proteins that assays were performed with are exc-7, fox-1, and mbl-1. We found that double mutants have stronger effects on lifespan than single mutants. Thus, RNA binding protein mutations, although separate, appeared to be functionally connected. These observations, though being considered in C. elegans, could have a substantive impact on the study of gene regulation in humans and in turn, provide insight into the human aging processes.


2019 ◽  
Vol 60 (9) ◽  
pp. 1927-1938 ◽  
Author(s):  
Lauren K Dedow ◽  
Julia Bailey-Serres

Abstract Plants encode over 1800 RNA-binding proteins (RBPs) that modulate a myriad of steps in gene regulation from chromatin organization to translation, yet only a small number of these proteins and their target transcripts have been functionally characterized. Two classes of eukaryotic RBPs, pentatricopeptide repeat (PPR) and pumilio/fem-3 binding factors (PUF), recognize and bind to specific sequential RNA sequences through protein–RNA interactions. These modular proteins possess helical structural units containing key residues with high affinity for specific nucleotides, whose sequential order determines binding to a specific target RNA sequence. PPR proteins are nucleus-encoded, but largely regulate post-transcriptional gene regulation within plastids and mitochondria, including splicing, translation and RNA editing. Plant PUFs are involved in gene regulatory processes within the cell nucleus and cytoplasm. The modular structures of PPRs and PUFs that determine sequence specificity has facilitated identification of their RNA targets and biological functions. The protein-based RNA-targeting of PPRs and PUFs contrasts to the prokaryotic cluster regularly interspaced short palindromic repeats (CRISPR)-associated proteins (Cas) that target RNAs in prokaryotes. Together the PPR, PUF and CRISPR-Cas systems provide varied opportunities for RNA-targeted engineering applications.


Sign in / Sign up

Export Citation Format

Share Document