scholarly journals Dynamic Behavior of the trans-Golgi Network in Root Tissues of Arabidopsis Revealed by Super-Resolution Live Imaging

2014 ◽  
Vol 55 (4) ◽  
pp. 694-703 ◽  
Author(s):  
Tomohiro Uemura ◽  
Yasuyuki Suda ◽  
Takashi Ueda ◽  
Akihiko Nakano
2009 ◽  
Vol 20 (1) ◽  
pp. 438-451 ◽  
Author(s):  
Susana B. Salvarezza ◽  
Sylvie Deborde ◽  
Ryan Schreiner ◽  
Fabien Campagne ◽  
Michael M. Kessels ◽  
...  

The functions of the actin cytoskeleton in post-Golgi trafficking are still poorly understood. Here, we report the role of LIM Kinase 1 (LIMK1) and its substrate cofilin in the trafficking of apical and basolateral proteins in Madin-Darby canine kidney cells. Our data indicate that LIMK1 and cofilin organize a specialized population of actin filaments at the Golgi complex that is selectively required for the emergence of an apical cargo route to the plasma membrane (PM). Quantitative pulse-chase live imaging experiments showed that overexpression of kinase-dead LIMK1 (LIMK1-KD), or of LIMK1 small interfering RNA, or of an activated cofilin mutant (cofilin S3A), selectively slowed down the exit from the trans-Golgi network (TGN) of the apical PM marker p75-green fluorescent protein (GFP) but did not interfere with the apical PM marker glycosyl phosphatidylinositol-YFP or the basolateral PM marker neural cell adhesion molecule-GFP. High-resolution live imaging experiments of carrier formation and release by the TGN and analysis of peri-Golgi actin dynamics using photoactivatable GFP suggest a scenario in which TGN-localized LIMK1-cofilin regulate a population of actin filaments required for dynamin-syndapin-cortactin–dependent generation and/or fission of precursors to p75 transporters.


Sign in / Sign up

Export Citation Format

Share Document