lim kinase
Recently Published Documents


TOTAL DOCUMENTS

282
(FIVE YEARS 35)

H-INDEX

54
(FIVE YEARS 3)

Cells ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 78
Author(s):  
Juhyun Park ◽  
Soo Woong Kim ◽  
Min Chul Cho

The LIM kinases (LIMK1 and LIMK2), known as downstream effectors, and the Rho-associated protein kinase (ROCK), a regulator of actin dynamics, have effects on a diverse set of cellular functions. The LIM kinases are involved in the function of the male urogenital system by smooth muscle contraction via phosphorylation of cofilin and subsequent actin cytoskeleton reorganization. Although LIMK1 and LIMK2 share sequence similarities as serine protein kinases, different tissue distribution patterns and distinct localization during cell cycle progression suggest other biological functions for each kinase. During meiosis and mitosis, the LIMK1/2–cofilin signaling facilitates the orchestrated chromatin remodeling between gametogenesis and the actin cytoskeleton. A splicing variant of the LIMK2 transcript was expressed only in the testis. Moreover, positive signals with LIMK2-specific antibodies were detected mainly in the nucleus of the differentiated stages of germ cells, such as spermatocytes and early round spermatids. LIMK2 plays a vital role in proper spermatogenesis, such as meiotic processes of spermatogenesis after puberty. On the other hand, the literature evidence revealed that a reduction in LIMK1 expression enhanced the inhibitory effects of a ROCK inhibitor on the smooth muscle contraction of the human prostate. LIMK1 may have a role in urethral obstruction and bladder outlet obstruction in men with benign prostatic hyperplasia. Moreover, LIMK1 expression was reduced in urethral stricture. The reduced LIMK1 expression caused the impaired proliferation and migration of urethral fibroblasts. In addition, the activated LIMK2–cofilin pathway contributes to cavernosal fibrosis after cavernosal nerve injury. Recent evidence demonstrated that short-term inhibition of LIMK2 from the immediate post-injury period prevented cavernosal fibrosis and improved erectile function in a rat model of cavernosal nerve injury. Furthermore, chronic inhibition of the LIMK2–cofilin pathway significantly restrained the cavernosal veno-occlusive dysfunction, the primary pathophysiologic mechanism of post-prostatectomy erectile dysfunction through suppressing fibrosis in the corpus cavernosum. In conclusion, the LIM kinases–cofilin pathway appears to play a role in the function of the male urogenital system through actin cytoskeleton reorganization and contributes to the pathogenesis of several urogenital diseases. Therefore, LIM kinases may be a potential treatment target in urogenital disorder.


2021 ◽  
Vol 17 (11) ◽  
pp. e1009171
Author(s):  
Tunca Doğan ◽  
Ece Akhan Güzelcan ◽  
Marcus Baumann ◽  
Altay Koyas ◽  
Heval Atas ◽  
...  

Predictive approaches such as virtual screening have been used in drug discovery with the objective of reducing developmental time and costs. Current machine learning and network-based approaches have issues related to generalization, usability, or model interpretability, especially due to the complexity of target proteins’ structure/function, and bias in system training datasets. Here, we propose a new method “DRUIDom” (DRUg Interacting Domain prediction) to identify bio-interactions between drug candidate compounds and targets by utilizing the domain modularity of proteins, to overcome problems associated with current approaches. DRUIDom is composed of two methodological steps. First, ligands/compounds are statistically mapped to structural domains of their target proteins, with the aim of identifying their interactions. As such, other proteins containing the same mapped domain or domain pair become new candidate targets for the corresponding compounds. Next, a million-scale dataset of small molecule compounds, including those mapped to domains in the previous step, are clustered based on their molecular similarities, and their domain associations are propagated to other compounds within the same clusters. Experimentally verified bioactivity data points, obtained from public databases, are meticulously filtered to construct datasets of active/interacting and inactive/non-interacting drug/compound–target pairs (~2.9M data points), and used as training data for calculating parameters of compound–domain mappings, which led to 27,032 high-confidence associations between 250 domains and 8,165 compounds, and a finalized output of ~5 million new compound–protein interactions. DRUIDom is experimentally validated by syntheses and bioactivity analyses of compounds predicted to target LIM-kinase proteins, which play critical roles in the regulation of cell motility, cell cycle progression, and differentiation through actin filament dynamics. We showed that LIMK-inhibitor-2 and its derivatives significantly block the cancer cell migration through inhibition of LIMK phosphorylation and the downstream protein cofilin. One of the derivative compounds (LIMKi-2d) was identified as a promising candidate due to its action on resistant Mahlavu liver cancer cells. The results demonstrated that DRUIDom can be exploited to identify drug candidate compounds for intended targets and to predict new target proteins based on the defined compound–domain relationships. Datasets, results, and the source code of DRUIDom are fully-available at: https://github.com/cansyl/DRUIDom.


2021 ◽  
Vol 25 (5) ◽  
pp. 472-485
Author(s):  
A. V. Medvedeva ◽  
E. V. Tokmatcheva ◽  
A. N. Kaminskaya ◽  
S. A. Vasileva ◽  
E. A. Nikitina ◽  
...  

Prognosis of neuropsychiatric disorders in progeny requires consideration of individual (1) parent-of-origin effects (POEs) relying on (2) the nerve cell nuclear 3D chromatin architecture and (3) impact of parent-specific miRNAs. Additionally, the shaping of cognitive phenotypes in parents depends on both learning acquisition and forgetting, or memory erasure. These processes are independent and controlled by different signal cascades: the first is cAMPdependent, the second relies on actin remodeling by small GTPase Rac1 – LIMK1 (LIM-kinase 1). Simple experimental model systems such as Drosophila help probe the causes and consequences leading to human neurocognitive pathologies. Recently, we have developed a Drosophila model for Williams–Beuren Syndrome (WBS): a mutant agnts3 of the agnostic locus (X:11AB) harboring the dlimk1 gene. The agnts3 mutation drastically increases the frequency of ectopic contacts (FEC) in specific regions of intercalary heterochromatin, suppresses learning/memory and affects locomotion. As is shown in this study, the polytene X chromosome bands in reciprocal hybrids between agnts3 and the wild type strain Berlin are heterogeneous in modes of FEC regulation depending either on maternal or paternal gene origin. Bioinformatic analysis reveals that FEC between X:11AB and the other X chromosome bands correlates with the occurrence of short (~30 bp) identical DNA fragments partly homologous to Drosophila 372-bp satellite DNA repeat. Although learning acquisition in a conditioned courtship suppression paradigm is similar in hybrids, the middle-term memory formation shows patroclinic inheritance. Seemingly, this depends on changes in miR-974 expression. Several parameters of locomotion demonstrate heterosis. Our data indicate that the agnts3 locus is capable of trans-regulating gene activity via POEs on the chromatin nuclear organization, thereby affecting behavior.


Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1161
Author(s):  
Anna Brancato ◽  
Valentina Castelli ◽  
Gianluca Lavanco ◽  
Giuseppe Tringali ◽  
Vincenzo Micale ◽  
...  

Binge alcohol consumption among adolescents affects the developing neural networks underpinning reward and stress processing in the nucleus accumbens (NAc). This study explores in rats the long-lasting effects of early intermittent exposure to intoxicating alcohol levels at adolescence, on: (1) the response to natural positive stimuli and inescapable stress; (2) stress-axis functionality; and (3) dopaminergic and glutamatergic neuroadaptation in the NAc. We also assess the potential effects of the non-intoxicating phytocannabinoid cannabidiol, to counteract (or reverse) the development of detrimental consequences of binge-like alcohol exposuredimensions. Our results show that adolescent binge-like alcohol exposure alters the sensitivity to positive stimuli, exerts social and novelty-triggered anxiety-like behaviour, and passive stress-coping during early and prolonged withdrawal. In addition, serum corticosterone and hypothalamic and NAc corticotropin-releasing hormone levels progressively increase during withdrawal. Besides, NAc tyrosine hydroxylase levels increase at late withdrawal, while the expression of dopamine transporter, D1 and D2 receptors xpression is dynamically altered during binge and withdrawal. Furthermore, the expression of markers of excitatory postsynaptic signaling —PSD95; Homer-1 and -2 and the activity-regulated spine-morphing proteins Arc, LIM Kinase 1 and FOXP1—increase at late withdrawal. Notably, subchronic cannabidiol, during withdrawal, attenuates social- and novelty-induced aversion and passive stress-coping and rectifies the hyper-responsive stress axis and NAc dopamine and glutamate-related neuroplasticity. Overall, the exposure to binge-like alcohol levels in adolescent rats makes the NAc, during withdrawal, a locus minoris resistentiae as a result of perturbations in neuroplasticity and in stress-axis homeostasis. Cannabidiol holds a promising potential for increasing behavioural, neuroendocrine and molecular resilience against binge-like alcohol level’s harmful effects.


2021 ◽  
Vol 22 (16) ◽  
pp. 8837
Author(s):  
Elisa Rossi ◽  
Alexandre Kauskot ◽  
François Saller ◽  
Elisa Frezza ◽  
Sonia Poirault-Chassac ◽  
...  

Endoglin (Eng) is an endothelial cell (EC) transmembrane glycoprotein involved in adhesion and angiogenesis. Eng mutations result in vessel abnormalities as observed in hereditary hemorrhagic telangiectasia of type 1. The role of Eng was investigated in endothelial functions and permeability under inflammatory conditions, focusing on the actin dynamic signaling pathway. Endothelial Colony-Forming Cells (ECFC) from human cord blood and mouse lung/aortic EC (MLEC, MAEC) from Eng+/+ and Eng+/− mice were used. ECFC silenced for Eng with Eng-siRNA and ctr-siRNA were used to test tubulogenesis and permeability +/− TNFα and +/− LIM kinase inhibitors (LIMKi). In silico modeling of TNFα–Eng interactions was carried out from PDB IDs 5HZW and 5HZV. Calcium ions (Ca2+) flux was studied by Oregon Green 488 in epifluorescence microscopy. Levels of cofilin phosphorylation and tubulin post-translational modifications were evaluated by Western blot. F-actin and actin–tubulin distribution/co-localization were evaluated in cells by confocal microscopy. Eng silencing in ECFCs resulted in a decrease of cell sprouting by 50 ± 15% (p < 0.05) and an increase in pseudo-tube width (41 ± 4.5%; p < 0.001) compared to control. Upon TNFα stimulation, ECFC Eng–siRNA displayed a significant higher permeability compared to ctr-siRNA (p < 0.01), which is associated to a higher Ca2+ mobilization (p < 0.01). Computational analysis suggested that Eng mitigated TNFα activity. F-actin polymerization was significantly increased in ECFC Eng-siRNA, MAEC+/−, and MLEC+/− compared to controls (p < 0.001, p < 0.01, and p < 0.01, respectively) as well as actin/tubulin distribution (p < 0.01). Furthermore, the inactive form of cofilin (P-cofilin at Ser3) was significantly decreased by 36.7 ± 4.8% in ECFC Eng-siRNA compared to ctr-siRNA (p < 0.001). Interestingly, LIMKi reproduced the absence of Eng on TNFα-induced ECFC-increased permeability. Our data suggest that Eng plays a critical role in the homeostasis regulation of endothelial cells under inflammatory conditions (TNFα), and loss of Eng influences ECFC-related permeability through the LIMK/cofilin/actin rearrangement-signaling pathway.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
L. Rodríguez-Fernández ◽  
S. Company ◽  
R. Zaragozá ◽  
J. R. Viña ◽  
E. R. García-Trevijano

AbstractCalpain-2 (CAPN2) is a processing enzyme ubiquitously expressed in mammalian tissues whose pleiotropic functions depend on the role played by its cleaved-products. Nuclear interaction networks, crucial for a number of molecular processes, could be modified by CAPN2 activity. However, CAPN2 functions in cell nucleus are poorly understood. To unveil CAPN2 functions in this compartment, the result of CAPN2-mediated interactions in cell nuclei was studied in breast cancer cell (BCC) lines. CAPN2 abundance was found to be determinant for its nucleolar localization during interphase. Those CAPN2-dependent components of nucleolar proteome, including the actin-severing protein cofilin-1 (CFL1), were identified by proteomic approaches. CAPN2 binding, cleavage and activation of LIM Kinase-1 (LIMK1), followed by CFL1 phosphorylation was studied. Upon CAPN2-depletion, full-length LIMK1 levels increased and CFL1/LIMK1 binding was inhibited. In addition, LIMK1 accumulated at the cell periphery and perinucleolar region and, the mitosis-specific increase of CFL1 phosphorylation and localization was altered, leading to aberrant mitosis and cell multinucleation. These findings uncover a mechanism for the role of CAPN2 during mitosis, unveil the critical role of CAPN2 in the interactions among nuclear components and, identifying LIMK1 as a new CAPN2-target, provide a novel mechanism for LIMK1 activation. CFL1 is crucial for cytoskeleton remodeling and mitosis, but also for the maintenance of nuclear structure, the movement of chromosomes and the modulation of transcription frequently altered in cancer cells. Consequently, the role of CAPN2 in the nuclear compartment might be extended to other actin-associated biological and pathological processes.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhuo Wang ◽  
Xiaowan Yin ◽  
Meichen Ma ◽  
Hongchi Ge ◽  
Bin Lang ◽  
...  

A major barrier to HIV eradication is the persistence of viral reservoirs. Resting CD4+ T cells are thought to be one of the major viral reservoirs, However, the underlying mechanism regulating HIV infection and the establishment of viral reservoir in T cells remain poorly understood. We have investigated the role of IP-10 in the establishment of HIV reservoirs in CD4+ T cells, and found that in HIV-infected individuals, plasma IP-10 was elevated, and positively correlated with HIV viral load and viral reservoir size. In addition, we found that binding of IP-10 to CXCR3 enhanced HIV latent infection of resting CD4+ T cells in vitro. Mechanistically, IP-10 stimulation promoted cofilin activity and actin dynamics, facilitating HIV entry and DNA integration. Moreover, treatment of resting CD4+ T cells with a LIM kinase inhibitor R10015 blocked cofilin phosphorylation and abrogated IP-10-mediated enhancement of HIV latent infection. These results suggest that IP-10 is a critical factor involved in HIV latent infection, and that therapeutic targeting of IP-10 may be a potential strategy for inhibiting HIV latent infection.


2021 ◽  
Author(s):  
Christopher E Ramsden ◽  
Gregory S Keyes ◽  
Elizabeth Calzada ◽  
Mark S Horowitz ◽  
Jahandar Jahanipour ◽  
...  

The strong genetic link between Apolipoprotein E (ApoE) and sporadic Alzheimer's disease (AD) and the marked increase in brain lipid peroxidation observed in early AD suggest that dysfunctional lipid metabolism plays a central role in AD pathogenesis. However, specific mechanisms and targets linking ApoE and lipid peroxidation to AD are not well-defined. Here we used a combination of biochemical experiments, single-marker immunohistochemistry (IHC), and multiplex-IHC to examine the hypothesis that synaptic ApoE receptors and their ligands ApoE and Reelin are susceptible to lipid peroxidation, and that downstream disruptions in ApoE delivery and Reelin-ApoE receptor signaling cascades contribute to the pathogenesis of sporadic AD. We found that (1) Lys and His-enriched sequences within the binding regions of ApoER2, ApoE, VLDLR and Reelin, and recombinant ApoER2, ApoE and Reelin proteins, are vulnerable to attack by aldehydic products of lipid peroxidation, generating lipid-protein adducts and acid-stable ApoE receptor-ligand complexes; (2) ApoER2, lipid peroxidation-modified ApoE, native ApoE, Reelin, and multiple downstream components of Reelin-ApoE receptor signaling cascades that govern synaptic integrity [including DAB1, Tyr232-phosphorylated DAB1, Tyr607-phosphorylated Phosphatidylinositol 3-kinase, Thr508-phosphorylated LIM kinase-1, Ser202/Thr205-phosphorylated Tau and Thr19-phosphorylated-PSD95] accumulate in the immediate vicinity of neuritic plaques and surrounding abnormal neurons, and (3) several of these ApoE/Reelin-ApoE receptor-DAB1 pathway markers positively correlate with Braak stage, Aβ plaque load, and antemortem cognitive impairment. ApoE/Reelin-ApoER2-DAB1 axis pathologies were especially prominent in the dendritic compartments of the molecular layer of the dentate gyrus, cornu ammonis and subiculum, regions that receive synaptic input from the entorhinal-hippocampal projections that underlie memory formation. Taken together, these observations point toward extensive derangements in the ApoE/Reelin-ApoE receptor-DAB1 axis and provide evidence supporting a new, working hypothesis wherein lipid peroxidation-induced adduction and crosslinking of ApoE receptors and ApoE are proximate molecular events that compromise synaptic integrity and contribute to the histopathological hallmarks and cognitive deficits that characterize sporadic AD in humans.


2021 ◽  
Author(s):  
Tunca Doğan ◽  
Ece Akhan Güzelcan ◽  
Marcus Baumann ◽  
Altay Koyas ◽  
Heval Atas ◽  
...  

Predictive approaches such as virtual screening have been used in drug discovery with the objective of reducing developmental time and costs. Current machine learning and network-based approaches have issues related to generalization, usability, or model interpretability, especially due to the complexity of target proteins’ structure/function, and bias in system training datasets. Here, we propose a new computational method “DRUIDom” to predict bio-interactions between drug candidate compounds and target proteins by utilizing the domain modularity of proteins, to overcome problems associated with current approaches. DRUIDom is composed of two methodological steps. First, ligands/compounds are statistically mapped to structural domains of their target proteins, with the aim of identifying physical or functional interactions. As such, other proteins containing the mapped domain or domain pair become new candidate targets for the corresponding compounds. Next, a million-scale dataset of small molecule compounds, including the ones mapped to domains in the previous step, are clustered based on their molecular similarities, and their domain associations are propagated to other compounds within the same clusters. Experimentally verified bioactivity data points, obtained from public databases, are meticulously filtered to construct datasets of active/interacting and inactive/non-interacting compound–target pairs (~2.9M data points), and used as training data for calculating parameters of compound–domain mappings, which led to 27,032 high-confidence associations between 250 domains and 8,165 compounds, and a finalized output of ~5 million new compound–protein interactions. DRUIDom is experimentally validated by syntheses and bioactivity analyses of compounds predicted to target LIM-kinase proteins, which play critical roles in the regulation of cell motility, cell cycle progression, and differentiation through actin filament dynamics. We showed that LIMK-inhibitor-2 and its derivatives significantly block the cancer cell migration through inhibition of LIMK phosphorylation and the downstream protein cofilin. One of the derivative compounds (LIMKi-2d) was identified as a promising candidate due to its action on resistant Mahlavu liver cancer cells. The results demonstrated that DRUIDom can be exploited to identify drug candidate compounds for intended targets and to predict new target proteins based on the defined compound–domain relationships. The datasets, results, and the source code of DRUIDom are fully-available at: https://github.com/cansyl/DRUIDom.


Author(s):  
Wenjing Huang ◽  
Tsubasa S. Matsui ◽  
Takumi Saito ◽  
Masahiro Kuragano ◽  
Masayuki Takahashi ◽  
...  

Cells adapt to applied cyclic stretch (CS) to circumvent chronic activation of proinflammatory signaling. Currently, the molecular mechanism of the selective disassembly of actin stress fibers (SFs) in the stretch direction, which occurs at the early stage of the cellular response to CS, remains controversial. Here we suggest that the mechanosensitive behavior of myosin II, a major cross-linker of SFs, primarily contributes to the directional disassembly of the actomyosin complex SFs in bovine vascular smooth muscle cells and human U2OS osteosarcoma cells. First, we identified that CS with a shortening phase that exceeds in speed the inherent contractile rate of individual SFs leads to the disassembly. To understand the biological basis, we investigated the effect of expressing myosin regulatory light chain mutants and found that SFs with less actomyosin activities disassemble more promptly upon CS. We consequently created a minimal mathematical model that recapitulates the salient features of the direction-selective and threshold-triggered disassembly of SFs to show that disassembly or, more specifically, unbundling of the actomyosin bundle SFs is enhanced with sufficiently fast cell shortening. We further demonstrated that similar disassembly of SFs is inducible in the presence of an active LIM-kinase-1 mutant that deactivates cofilin, suggesting that cofilin is dispensable as opposed to a previously proposed mechanism.


Sign in / Sign up

Export Citation Format

Share Document